University of Worcester Worcester Research and Publications
 
  USER PANEL:
  ABOUT THE COLLECTION:
  CONTACT DETAILS:

Measurement of the Raman Spectra and Hygroscopicity of Four Pharmaceutical Aerosols as They Travel from Pressurised Metered Dose Inhalers (pMDI) to a Model Lung

Davidson, N., Tong, H-J., Kalberer, M., Seville, Peter C. ORCID logoORCID: https://orcid.org/0000-0001-8546-3474, Ward, A.D., Kuimova, M.K. and Pope, F.D. (2017) Measurement of the Raman Spectra and Hygroscopicity of Four Pharmaceutical Aerosols as They Travel from Pressurised Metered Dose Inhalers (pMDI) to a Model Lung. International Journal of Pharmaceutics, 520 (1-2). 59 - 69. ISSN Print: 0378-5173 Online: 1873-3476

[thumbnail of Seville-2017-AAM-7555-Measurement-of-the-raman-spectra-and-hygroscopicity-of-four-pharmaceutical-aerosols-as-they-travel-from-pressurised-metered-dose-inhalers-pMDI-to-a-model-lung.pdf]
Preview
Text
Seville-2017-AAM-7555-Measurement-of-the-raman-spectra-and-hygroscopicity-of-four-pharmaceutical-aerosols-as-they-travel-from-pressurised-metered-dose-inhalers-pMDI-to-a-model-lung.pdf - Accepted Version
Available under License Creative Commons Attribution No Derivatives.

Download (1MB) | Preview

Abstract

Particle inhalation is an effective and rapid delivery method for a variety of pharmaceuticals, particularly bronchodilation drugs used for treating asthma and COPD. Conditions of relative humidity and temperature inside the lungs are generally very different from the outside ambient air, with the lung typically being warmer and more humid. Changes in humidity, from inhaler to lung, can cause hygroscopic phase transitions and particle growth. Increasing particle size and mass can negatively affect particle deposition within the lung leading to inefficient treatment, while deliquescence prior to impaction is liable to accelerate drug uptake. To better understand the hygroscopic properties of four pharmaceutical aerosol particles; pharmaceutical particles from four commercially available pressurised metered dose inhalers (pMDIs) were stably captured in an optical trap, and their composition was examined online via Raman spectroscopy. Micron-sized particles of salbutamol sulfate, salmeterol xinafoate, fluticasone propionate and ciclesonide were levitated and examined over a range of relative humidity values inside a chamber designed to mimic conditions within the respiratory tract. The effect of temperature upon hygroscopicity was also investigated for salbutamol sulfate particles. Salbutamol sulfate was found to have significant hygroscopicity, salmeterol xinafoate showed some hygroscopic interactions, whilst fluticasone propionate and ciclesonide revealed no observable hygroscopicity. Thermodynamic and structural modelling is used to explain the observed experimental results.

Item Type: Article
Additional Information:

The full-text of the published version cannot be supplied. Please check availability with your local library or Interlibrary Requests service.

The full-text of accepted version can be accessed via http://clok.uclan.ac.uk/16952/

Uncontrolled Discrete Keywords: Hygroscopicity, optical trapping, laser tweezers, suspended particle, pMDI
Divisions: College of Health, Life and Environmental Sciences > School of Science and the Environment
Related URLs:
Depositing User: Peter Seville
Date Deposited: 18 Feb 2019 10:25
Last Modified: 25 Aug 2020 14:58
URI: https://eprints.worc.ac.uk/id/eprint/7555

Actions (login required)

View Item View Item
 
     
Worcester Research and Publications is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits.