University of Worcester Worcester Research and Publications
 
  USER PANEL:
  ABOUT THE COLLECTION:
  CONTACT DETAILS:

Predicting field-goal success according to offensive, defensive and contextual variables in elite men’s wheelchair basketball

Francis, John ORCID logoORCID: https://orcid.org/0000-0001-7457-5665, Owen, A. and Peters, D.M. ORCID logoORCID: https://orcid.org/0000-0002-7873-7737 (2021) Predicting field-goal success according to offensive, defensive and contextual variables in elite men’s wheelchair basketball. PLoS One, 16 (1). ISSN Print 1932-6203 Online 1932-6203

[thumbnail of AMM Francis et al. Predicting field-goal success.docx] Text
AMM Francis et al. Predicting field-goal success.docx

Download (102kB)
[thumbnail of journal.pone.0244257.pdf]
Preview
Text
journal.pone.0244257.pdf - Published Version

Download (1MB) | Preview

Abstract

The purposes of this study were to (i) develop a field-goal shooting performance analysis template and (ii) explore the impact of each identified variable upon the likely outcome of a field-goal attempt using binary logistic regression modelling in elite men’s wheelchair basketball. First, a field-goal shooting performance analysis template was developed that included 71 Action Variables (AV) grouped within 22 Categorical Predictor Variables (CPV) representing offensive, defensive and game context variables. Second, footage of all 5,105 field-goal attempts from 12 teams during the men’s 2016 Rio De Janeiro Paralympic Games wheelchair basketball competition were analysed using the template. Pearson’s chi-square analyses found that 18 of the CPV were significantly associated with field-goal attempt outcome (p < 0.05), with seven of them reaching moderate association (Cramer’s V: 0.1-0.3). Third, using 70% of the dataset (3,574 field-goal attempts), binary logistic regression analyses identified that five offensive variables (classification category of the player, the action leading up to the field-goal attempt, the time left on the clock, the location of the shot, and the movement of the player), two defensive variables (the pressure being exerted by the defence, and the number of defenders within a 1-meter radius) and 1 context variable (the finishing position of the team in the competition) affected the probability of a successful field-goal attempt. The quality of the developed model was determined acceptable (greater than 65%), producing an area under the curve value of 68.5% when the model was run against the remaining 30% of the dataset (1,531 field-goal attempts). The development of the model from such a large sample of objective data is unique. As such it offers robust empirical evidence to enable coaches, performance analysts and players to move beyond anecdote, in order to appreciate the potential effect of various and varying offensive, defensive and contextual variables on field-goal success.

Item Type: Article
Additional Information:

Copyright: © 2021 Francis et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

The associated dataset can be accessed here: https://eprints.worc.ac.uk/id/eprint/9964

Uncontrolled Discrete Keywords: disability sport, logistic regression, prediction, sports coaching, sports performance analysis
Subjects: R Medicine > RC Internal medicine > RC1200 Sports Medicine
Divisions: College of Business, Psychology and Sport > School of Sport and Exercise Science
College of Health, Life and Environmental Sciences > School of Allied Health and Community
Related URLs:
Copyright Info: Open Access journal
Depositing User: John Francis
Date Deposited: 14 Dec 2020 15:06
Last Modified: 19 Oct 2021 08:09
URI: https://eprints.worc.ac.uk/id/eprint/9966

Actions (login required)

View Item View Item
 
     
Worcester Research and Publications is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits.