University of Worcester Worcester Research and Publications
 
  USER PANEL:
  ABOUT THE COLLECTION:
  CONTACT DETAILS:

A Mutation in Amino Acid Permease AAP6 Reduces the Amino Acid Content of the Arabidopsis Sieve Elements but Leaves Aphid Herbivores Unaffected.

Hunt, E., Gattolin, S., Newbury, John, Bale, J.S., Tseng, H., Barrett, D.A. and Pritchard, J. (2010) A Mutation in Amino Acid Permease AAP6 Reduces the Amino Acid Content of the Arabidopsis Sieve Elements but Leaves Aphid Herbivores Unaffected. Journal of Experimental Botany, 61 (1). pp. 55-64. ISSN Print: 0022-0957 Online: 1460-2431

[img]
Preview
PDF
aap6_paper.pdf

Download (360kB) | Preview

Abstract

The aim of this study was to investigate the role of the amino acid permease gene AAP6 in regulating phloem amino
acid composition and then to determine the effects of this altered diet on aphid performance. A genotype of
Arabidopsis thaliana (L.) was produced in which the function of the amino acid permease gene AAP6 (At5g49630)
was abolished. Plants homozygous for the insertionally inactivated AAP6 gene had a significantly larger mean
rosette width than the wild type and a greater number of cauline leaves. Seeds from the aap6 mutant were also
significantly larger than those from the wild-type plants. Sieve element (SE) sap was collected by aphid stylectomy
and the amino acids derivatized, separated, and quantified using Capillary Electrophoresis with Laser Induced
Fluorescence (CE-LIF). In spite of the large variation across samples, the total amino acid concentration of SE sap of the aap6 mutant plants was significantly lower than that of the wild-type plants. The concentrations of lysine,
phenylalanine, leucine, and aspartic acid were all significantly lower in concentration in the aap6 mutant plants compared with wild-type plants. This is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo. The amino acid availability in sieve element sap is thought to be the major limiting factor for aphid growth and reproduction. Despite the changes in their diet, the aphid Myzus persicae(Sulzer) displayed only small changes in feeding behaviour on mutant plants when measured using the Electronic Penetration Graph (EPG) technique. Salivation by the aphid into the SE (E1 phase) was increased on mutant plants but there was no significant effect on other feeding EPG behaviours, or in the rate of honeydew production.
Consistent with the small effect on aphid feeding behaviour, there was only a small effect of reduced sieve element amino acid concentration on aphid reproduction. The data are discussed in relation to the regulation of phloem
composition and the role of phloem amino acids in regulating aphid performance.

Item Type: Article
Additional Information:

This is an Advance Access research paper published online by Oxford Journals on September 15, 2009

Uncontrolled Discrete Keywords: AAP6, amino acid, aphid, Arabidopsis thaliana, capillary electrophoresis, EPG, herbivore, Myzus persicae, phloem, sieve element.
Subjects: Q Science > QK Botany
Q Science > QP Physiology
Divisions: College of Health, Life and Environmental Sciences > School of Science and the Environment
Related URLs:
Depositing User: John Newbury
Date Deposited: 29 Oct 2009 16:28
Last Modified: 08 Jun 2021 09:25
URI: https://eprints.worc.ac.uk/id/eprint/752

Actions (login required)

View Item View Item
 
     
Worcester Research and Publications is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits.