University of Worcester Worcester Research and Publications

Towards a climate-dependent paradigm of ammonia emission and deposition

Sutton, M.A., Reis, S., Riddick, S.N., Dragosits, U., Nemitz, E., Theobald, M.R., Tang, Y.S., Braban, C.F., Vieno, M., Dore, A.J., Mitchell, R.F., Wanless, S., Daunt, F., Fowler, D., Blackall, T.D., Milford, C., Flechard, C.R., Loubet, B., Massad, R., Cellier, P., Personne, E., Cohour, P.F., Clarisse, L., Van Damme, M., Ngadi, Y., Clerbaux, C., Skjøth, C. ORCID:, Geels, C., Hertel, O., Wichink Kruit, R.J., Pinder, R.W., Bash, J.O., Walker, J.T., Simpson, D., Horva´th, L., Misselbrook, T.H., Bleeker, A., Dentener, F. and de Vries, W. (2013) Towards a climate-dependent paradigm of ammonia emission and deposition. Philosophical Transactions of the Royal Society B, 368 (1621). ISSN 0261-0523

[img] PDF
Sutton_et_al2013_-_PhilTransactionR.Society_B.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy


Existing descriptions of bi-directional ammonia (NH3) land–atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission–deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate
suggests that 58C warming would increase emissions by 42
per cent (28–67%). Together with increased anthropogenic
activity, global NH3 emissions may increase from 65
(45–85) Tg N in 2008 to reach 132 (89–179) Tg by 2100.

Item Type: Article
Additional Information:

The full-text cannot be supplied for this item. Please check availability with your local library or Interlibrary Requests Service.

Originally deposited as National Pollen and Aerobiology Research Unit (NPARU)

Uncontrolled Discrete Keywords: ammonia, emission, deposition, atmospheric modelling
Subjects: Q Science > Q Science (General)
Divisions: College of Health, Life and Environmental Sciences > School of Science and the Environment
Related URLs:
Depositing User: Carsten Skjoth
Date Deposited: 15 Jul 2013 10:15
Last Modified: 08 Jun 2021 09:23

Actions (login required)

View Item View Item
Worcester Research and Publications is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits.