University of Worcester Worcester Research and Publications
 
  USER PANEL:
  ABOUT THE COLLECTION:
  CONTACT DETAILS:

Identifying Urban Sources as Cause of Elevated Grass Pollen Concentrations using GIS and Remote Sensing

Skjøth, C. and Ørby, P.V. and Becker, T. and Geels, C. and Schlünssen, V. and Sigsgaard, T. and Bønløkke, J.H. and Sommer, J. and Søgaard, P. and Hertel, O. (2013) Identifying Urban Sources as Cause of Elevated Grass Pollen Concentrations using GIS and Remote Sensing. Biogeosciences, 10. pp. 541-554. ISSN Print: 1726-4170 Electronic:1726-4189

[img] Text
Skjøth_et_al2013_-_Biogeosciences.pdf - Published Version
Available under License Creative Commons Attribution.

Download (4MB)

Abstract

We examine here the hypothesis that during flowering, the grass pollen concentrations at a specific site reflect the distribution of grass pollen sources within a few kilometres of this site.We perform this analysis on data from a measurement campaign in the city of Aarhus (Denmark) using three pollen traps and by comparing these observations with a novel inventory of grass pollen sources. The source inventory is based on a new methodology developed for urbanscale grass pollen sources. The new methodology is believed to be generally applicable for the European area, as it relies on commonly available remote sensing data combined with management information for local grass areas. The inventory has identified a number of grass pollen source areas present within the city domain. The comparison of the measured pollen concentrations with the inventory shows that the atmospheric concentrations of grass pollen in the urban zone reflect the source areas identified in the inventory, and that the pollen sources that are found to affect the pollen levels are located near or within the city domain. The results also show that during days with peak levels of pollen concentrations there is no correlation between the three urban traps and an operational trap located just 60 km away. This finding suggests that during intense flowering, the grass pollen concentration mirrors the local source distribution and is thus a local-scale phenomenon. Model simulations aimed at assessing population exposure to pollen levels are therefore recommended to take into account both local sources and local atmospheric transport, and not to rely only on describing regional to long-range transport of pollen. The derived pollen source inventory can be entered into local-scale atmospheric transport models in combination with other components that simulate pollen release in order to calculate urban-scale variations in the grass pollen load. The gridded inventory with a resolution of 14m is therefore made available as supplementary material to this paper, and the verifying grass pollen observations are additionally available in tabular form.

Item Type: Article
Additional Information:

Originally deposited as National Pollen and Aerobiology Research Unit (NPARU)

Uncontrolled Keywords: grass pollen, GIS, remote sensing, pollen levels
Subjects: Q Science > Q Science (General)
Divisions: Academic Departments > Institute of Science and the Environment
Related URLs:
Depositing User: Carsten Skjoth
Date Deposited: 08 Jul 2013 13:25
Last Modified: 18 Feb 2016 11:14
URI: https://eprints.worc.ac.uk/id/eprint/2243

Actions (login required)

View Item View Item
 
     
Worcester Research and Publications is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits.