Ovariectomy modifies lipid metabolism of retroperitoneal white fat in rats: a proteomic approach

Valter T. Boldarine¹, Amanda P. Pedroso¹, Caroline Brandão-Teles², Edson G. LoTurco⁶, Cláudia M.O. Nascimento¹, Lila M. Oyama¹, Allain A. Bueno⁷, Daniel Martins-de-Souza²,³,⁴,⁵, Eliane B. Ribeiro¹

¹Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil.
²Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
³Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
⁴Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, SP, Brazil.
⁵D’Or Institute for Research and Education (IDOR), São Paulo, Brazil.
⁶Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Cirurgia, Divisão de Urologia e Reprodução Humana, São Paulo, Brazil.
⁷Department of Biological Sciences, College of Health, Life and Environmental Sciences, University of Worcester, Worcester, United Kingdom
Corresponding author:

Valter Tadeu Boldarine
Universidade Federal de São Paulo, Departamento de Fisiologia
Rua Botucatu 862, 2º andar
Vila Clementino, 04023-062, São Paulo, SP, Brasil
E-mail: valtertadeuboldarine@gmail.com
Phone/Fax: 55 11 5576-4765
Abstract: Menopause is often accompanied by visceral obesity. With the aim of exploring the consequences of ovarian failure on visceral fat, we evaluated the effects of ovariectomy and estrogen replacement on the proteome/phosphoproteome and on the fatty acids profile of the retroperitoneal adipose depot (RAT) of rats. Eighteen three months old female Wistar rats were either ovariectomized or sham-operated and fed with standard chow for three months. A sub-group of ovariectomized rats received estradiol replacement. RAT samples were analyzed using data-independent acquisitions LC-MS/MS and pathway analysis was performed with the differentially expressed/phosphorylated proteins. RAT lipid profile was analyzed by gas chromatography.

Ovariectomy induced high adiposity and insulin resistance and promoted alterations in protein expression and phosphorylation. Pathway analysis showed that 5 pathways were significantly affected by ovariectomy, namely metabolism of lipids (included fatty acid metabolism and mitochondrial fatty acid β-oxidation), fatty acyl-CoA biosynthesis, innate immune system (included neutrophil degranulation), metabolism of vitamins and cofactors, and integration of energy metabolism (included ChREBP activates metabolic gene expression). Lipid profile analysis showed increased palmitic and palmitoleic acids content. The analysis of the data indicated that ovariectomy favored lipogenesis while it impaired fatty acids oxidation, and induced a pro-inflammatory state in the visceral adipose tissue. These effects are consistent with the findings of high adiposity, hyperleptinemia, and impaired insulin sensitivity. The observed alterations were partially attenuated by estradiol replacement. The data point to a role of disrupted lipid metabolism in adipose tissue in the genesis of obesity after menopause.

Keywords – menopause; retroperitoneal adipose tissue; proteome/phosphoproteome; lipid profile; estrogen replacement.
1. Introduction

The cessation of ovarian hormones production in menopause is often followed by increased body weight gain and adiposity, associated with obesity-related co-morbidities (11, 28). In both humans and rodents, a role of estrogens in metabolic, immune, and inflammatory processes has been established, although the complexity by which these effects occur is not fully understood (20, 45). The lack of estrogens after menopause has been associated with a shift of fat distribution from subcutaneous to visceral, with impairment of the sensitivity to insulin and leptin, predisposition to diabetes and to anxiety and depressive disorders (5, 14, 23).

In both humans and rats, the visceral (or abdominal) adipose tissue comprises mesenteric, retroperitoneal, perirenal, and gonadal depots. Additionally, humans have the omental depot (38). A depot-specificity of functions has been described for the adipose tissue, which may result from differences intrinsic to pre-adipocytes and to factors secreted by neighboring organs (62). During the development of obesity, the visceral adipose tissue suffers a higher degree of hypertrophy and macrophage infiltration than the subcutaneous depots, leading to a high production of inflammatory mediators that contribute substantially to the pathophysiology of obesity complications (40, 46).

Several disruptions of the metabolism of visceral adipose tissue have been reported in ovariectomized rodent models. Increased conversion of cortisone to cortisol, due to increased expression of type 1 11β-hydroxysteroid dehydrogenase, has been found in visceral but not in subcutaneous adipose depots, contributing to fat redistribution (3). Decreased glutathione peroxidase activity and superoxide dismutase protein levels, indicating impairment of antioxidant status, as well as low mRNA levels of the anti-inflammatory hormone adiponectin, have also been observed (1).

Using a two-dimensional gel electrophoresis-based proteomic approach, a recent study described that ovariectomy affected proteins involved in intermediate metabolism, energy transduction, cell structure, and immune system, in the periovarian adipose tissue of rats (2). The use of a more sensitive and accurate proteomic technique could help unravel a more expressive number of proteins and pathways affected by ovarian failure in the visceral fat.
Moreover, the identification of changes in protein phosphorylation is of high relevance, as it plays a pivotal role in a multitude of cellular functions.

Additionally, perturbations of visceral adipose tissue functions have been associated with its fatty acids composition in several conditions, such as diet-induced obesity and diabetes (6, 63). However, data on the effects of obesity induced by the loss of ovarian hormones in visceral adipose tissue fatty acid composition are scarce. One study reported increased levels of short-chain saturated fatty acids levels in the visceral fat of postmenopausal women (67). Further studies on the subject are necessary.

Aiming at expanding our knowledge on the consequences of ovarian failure on visceral fat, the present study examined the effects of ovariectomy and of estrogen replacement on the proteome/phosphoproteome as well as on the fatty acid profile of the retroperitoneal fat of rats.

2. Materials and Methods

2.1 Experimental procedures

The experiments were performed in accordance with the Committee in Research Ethics of the Universidade Federal de São Paulo (CEUA nº: 2172030315/ 2016), which follow the guidelines of the Conselho Nacional de Controle de Experimentação Animal (CONCEA). The present data is part of our previously published investigation in which we evaluated the effects of ovariectomy, aligned or not to high-fat diet feeding, on metabolic and behavior parameters of rats (5). Briefly, the female Wistar rats (twelve-week-old) were either ovariectomized (Ovx group, n=12) or sham operated (Sham group, n=6) under ketamine/xylazine anesthesia (66/33mg/kg, ip). A sub-set of Ovx animals received 17β-estradiol replacement (Ovx+E2 group), via subcutaneous pellets (0.25 mg/pellet, 90-day release; Innovative Research of America, Sarasota, Florida, USA). The daily dose of estrogen released was 2.8 µg/day/90 days, yielding a daily dose range of 0.010 to 0.008 mg/Kg/day, considering the mean initial and final body weights during the 12 weeks of treatment. One dose of penicillin (60.000U. i.m.) and ibuprofen (1 mg/kg body weight, v.o.) was given to all animals after the surgery. Additionally,
they received one ibuprofen dose per day for the 2 subsequent days. They were maintained under a 12h light/dark cycle (lights on at 6 am) and 23 ± 1°C temperature with food (2.87 kcal/g, 15% of energy from fat, Nuvilab CR-1, Nuvital Nutrientes SA, Colombo, PR, Brazil) and water ad libitum for 12 weeks. Body weight and 24-h food mass intake were measured once a week. Feed efficiency was calculated as: (body weight gain / energy intake) x 100.

Euthanasia was conducted under thiopental anesthesia (80mg/kg, ip) after a 24-h fasting. Trunk blood was collected and white fat pads (retroperitoneal, gonadal and mesenteric) were dissected, weighed, and frozen in liquid nitrogen. All tissue and serum samples were stored at -80°C. The uteri were weighed for confirmation of completeness of ovaries removal.

2.2 Serum and tissue cytokines measurements

Serum measurements and HOMA index were conducted as previously described (5). RAT content of TNF-α (sensitivity – 2.4 ng/mL; intra-assay precision- 4.98%; inter-assay precision- 9.44%) and IL-6 (sensitivity – 0.7 ng/mL; intra-assay precision- 3.96%; inter-assay precision- 8.64%) were also determined by Elisa (R&D Systems, Minneapolis, MN, USA).

2.3 Retroperitoneal fat proteome and phosphoproteome analyses

Aliquots (800 mg) of RAT fat pads were homogenized in 1mL of buffer containing 50 mM ammonium bicarbonate, 1% sodium deoxycholate (m/v), and deionized water (51), with the addition of a protease/phosphatase inhibitor cocktail (Thermo Scientific, Rockford, IL, USA), and centrifuged at 19,000 x g for 30 minutes at 4°C. Protein concentration in the supernatants was determined using a Pierce BCA assay (Thermo Scientific, Rockford, IL, USA). Aliquots of 200 µg of protein were diluted in 50 mM ammonium bicarbonate to a final volume of 85 µL. Samples were then subjected to reduction with 2.5 µL of 100 mM DTT at 60°C for 30 min and alkylation with 2.5 µL of 300 mM iodoacetamide, at room temperature for 30 min. Proteins were digested overnight using trypsin (Promega, Fitchburg, WI, USA) at a 1:100 (wt:wt) enzyme:protein ratio at 37°C. After digestion, samples were centrifuged at...
19,000 x g for 15 minutes at 4°C, the supernatants were collected and an equal volume of ethyl acetate was added \((36)\). Then, trifluoroacetic acid was added to a final concentration of 0.5%. Samples were homogenized in vortex and centrifuged at 19,000 x g for 5 minutes at 4°C. Supernatants were collected, transferred to Millex-GV filters (Millipore, Burlington, MA, USA), recovered, dried in a vacuum concentrator centrifuge (Eppendorf, Hamburg, HH, Germany), and stored at \(-80°C\) until mass spectrometry analysis.

2.4 Liquid-chromatography mass spectrometry

After reconstitution of the samples in 1% (v/v) formic acid, protein content was determined fluorimetrically \((\text{Qubit® 3.0 Fluorometer, Thermo Scientific, Rockford, IL, USA})\) and the final concentration was adjusted to 0.5 \(\mu\)g/\(\mu\)L. The proteomic and phosphoproteomic analyses were performed by data-independent acquisitions liquid-chromatography mass spectrometry \((\text{ACQUITY UPLC M-Class coupled to Synapt G2-Si mass spectrometer})\) \((\text{Waters, Milford, MA, USA})\). An ACQUITY UPLC HSS T3 nanoACQUITY Column \((100 \text{ Å}, 1.8 \mu\text{m, 75} \mu\text{m} \times 150 \text{ mm.}, \text{Waters})\) was used for peptides separation \((1\mu\text{g})\) in acetonitrile gradient from 7% (v/v) for 54 min, and then increased to 80% of acetonitrile for 13 min, at a flow rate of 500 nL/min). Data were acquired using nanoESI ionization on positive mode, in HDMS\(^E\) mode using Transfer MS Collision Energy Low (eV) 19.0 and Transfer MS Collision Energy High (eV) 53.0. Human Glu-fibrinopeptide B was used for mass spectrometer calibration. MS identification was made between 50 and 2000 \(m/z\).

2.5 Database search

Mass spectrometry data processing and database search against Rattus norvegicus sequences \((\text{UniProtKB/Swiss-Prot database, www.uniprot.org, 8680 entries})\) were performed with the Progenesis for Proteomics software \((\text{version 4.0, Waters})\). Peptides identification followed the parameters: maximum 1 missed cleavage site allowed for trypsin digestion; cysteine carbamidomethylation as fixed modification and methionine oxidation as variable
modification. The search for phosphopeptides was made through variable modification of serine, threonine and tyrosine phosphorylation. Protein identification used the following criteria: False discovery rate (FDR) set at less than 1%, minimum of 2 fragment ions per peptide, 5 fragment ions per protein, and 2 peptides per protein. Relative protein quantification was performed by the Hi-N approach, using the three most abundant peptides, with priority of the unique peptides’ ones (58). Normalized data were exported to Excel files.

2.6 Pathway analysis

The proteins differentially expressed and/or differentially phosphorylated among the groups were included in the test to determine enriched pathways, using the online Panther platform (http://www.pantherdb.org, version 14.1, released 2019-07-11). The whole Rattus norvegicus proteome was used as the reference list and the Reactome Pathways was used as the annotation data set. Significantly enriched pathways were based on Fisher’s exact test followed by Bonferroni correction with significance set to p < 0.05.

2.7 RAT fatty acid composition

Aliquots of 1,000 mg of RAT were extracted in hexane/isopropanol (3:2 v/v) containing 0.01% butylated hydroxytoluene (BHT). After addition of chloroform/methanol/water (2:1:1 v/v/v), the samples were centrifuged (10,000 x g for 10 minutes) and the organic layers were separated and evaporated to complete dryness with oxygen-free nitrogen (OFN). The lipids were partitioned again in chloroform/methanol/water (8:4:3 v/v/v) and the chloroform layer was dried under OFN.

Fatty acid analysis was performed as previously described (7). Briefly, fatty acid methyl esters (FAME) were obtained by heating the samples with 15% acyl chloride in dry methanol in a sealed tube at 70°C during 3 hours under OFN. A solution of 5% NaCl was used to stop the reaction, at room temperature, and FAMEs were extracted by 3 washings with petroleum ether containing 0.01% BHT. Gas chromatography with flame ionization detector (GC2010 Plus,
Shimadzu, Kyoto, Japan) was performed with a TRACE TR-FAME capillary column (Thermo Scientific, Rockford, IL, USA). The intensity of peaks was quantified using the software Labsolutions (Shimadzu, Kyoto, Japan).

2.8 Statistical analysis

Body weight, white fat depots mass, and serum parameters variables were tested for normality (Shapiro-Wilk test) and homoscedasticity (Levene’s test). Normally distributed variables (means ± standard error) were analyzed ANOVA and Tukey post hoc test. Non-parametric variables (median and interquartile range) were analyzed by Kruskal-Wallis ANOVA followed by two tailed multiple comparisons. All tests were performed with Statistica 12 Software (StatSoft, Tulsa, OK, USA) for p < 0.05.

Proteome and phosphoproteome data were submitted to analysis on the online platform MetaboAnalyst (http://www.metaboanalyst.ca). Data were log transformed and the missing values were replaced by half the minimum positive value in the original data. The data was normalized by pareto scaling and submitted to principal component analysis (PCA) followed by partial least-squares discriminant analysis (PLSDA). Variable importance for the projection (VIP) values higher than 1.5 in the principal component 1 were considered in order to identify the proteins and phosphopeptides that most contributed to discrimination among the groups.

3. Results

3.1 Ovariectomy induced high adiposity and insulin resistance

As shown in Table 1, the success of ovariectomy was confirmed by the low uterus weight of the ovariectomized groups. Initial body weight was similar among the 3 groups while both ovariectomized groups had higher body weights, feed efficiency and total fat mass at the end of the 12 weeks. Regarding the individual fat depots masses, while the gonadal fat depot was not different among the groups, both retroperitoneal and mesenteric depots were increased by
ovariectomy and not normalized by estrogen replacement. The elevations induced by ovariectomy in leptin and insulin levels, leptin/adiponectin ratio, HOMA-IR and HOMA-β were significantly attenuated by estradiol replacement. Total cholesterol, HDL-cholesterol and triglycerides levels did not differ significantly among the groups. RAT levels of TNF-α and IL-6 were similar among the groups.

3.2 Ovariectomy induced changes in protein expression and phosphorylation and modified metabolic pathways in retroperitoneal fat

Among the 18 biological samples, 13,722 peptides, corresponding to 1,246 proteins, were identified, of which 994 proteins met the inclusion criteria and were included in the statistical analysis. The multivariate analysis found 91 RAT proteins significantly modulated among the groups. The PLSDA analysis based on principal components showed a separation between the Sham and the Ovx groups while the Ovx+E2 group presented an intermediate profile (Figures 1A). Forty-two proteins were downregulated and 49 proteins were upregulated by ovariectomy, in relation to the Sham group. The E2-replacement group presented 43 downregulated proteins and 48 upregulated proteins, in comparison to the Sham group. The complete list of proteins with altered expression is presented in Appendix 1 (supplementary material).

Considering the phosphoproteome results, 1,074 peptides were identified with at least one phosphorylation site, corresponding to 468 proteins. The multivariate analysis found 107 peptides (corresponding to 96 proteins) with a characteristic phosphorylation pattern for each group. The analysis based on principal components showed a separation of Sham and Ovx groups, while the replacement group showed to be in an intermediate position (Figures 1B). In comparison to the Sham group, the Ovx group showed decreased phosphorylation of 39 proteins and 68 proteins showed increased phosphorylation. The Ovx+E2 group showed downregulation of 42 proteins and 65 proteins with increased phosphorylation compared to Sham group. The complete list of proteins with altered phosphorylation is presented in Appendix 2 (supplementary material).
The pathway overrepresentation test showed significantly enrichment of pathways involved in lipid metabolism: fatty acyl-CoA biosynthesis pathway (1 protein/4 phosphopeptides; \(p = 2.67\times10^{-2}\)) (Figure 2A) and metabolism of lipids pathway (9 proteins/11 phosphopeptides; \(p = 5.30\times10^{-5}\)), the latter including fatty acid metabolism (6 proteins/9 phosphopeptides; \(p = 7.35\times10^{-8}\)) and mitochondrial fatty acid β-oxidation (4 proteins/2 phosphopeptides; \(p = 1.65\times10^{-3}\)) (Figure 2B). The proteins participating in these pathways included long-chain-fatty-acid-CoA ligase 5 (ACSL5), long-chain-fatty-acid-CoA ligase 1 (ACSL1), short-chain specific acyl-CoA dehydrogenase (ACADS), long-chain specific acyl-CoA dehydrogenase (ACADL), very long-chain specific acyl-CoA dehydrogenase (ACADVL), acyl-coenzyme A thioesterase type 2 (ACOT2), enoyl-CoA delta isomerase-1 (ECI1), acetyl-CoA carboxylase-1 (ACC1), and fatty acid synthase (FAS) (Table 2).

The innate immune metabolism pathway (10 proteins/16 phosphopeptides; \(p = 1.82\times10^{-7}\)), including the neutrophil degranulation pathway (5 proteins/13 phosphopeptides; \(p = 2.07\times10^{-10}\)), was also altered by ovariectomy (Figure 3), and the affected proteins included the platelet glycoprotein 4 (CD36). Two other important proteins related to the immune system were adenylyl cyclase-associated protein 1 (CAP1) and class I histocompatibility antigen, non-RT1.A alpha-1 chain (RT1-AW2) (Table 2).

The last two enriched pathways were the metabolism of vitamins and cofactors pathway (5 proteins/4 phosphopeptides; \(p = 4.29\times10^{-2}\)) (Figure 4A) and the integration of energy metabolism pathway (3 proteins/6 phosphopeptides; \(p = 5.74\times10^{-4}\)), which included the pathway ChREBP activates metabolic gene expression (3 phosphopeptides; \(p = 4.42\times10^{-2}\)) (Figure 4B).

Table 2 also shows that ovariectomy induced changes in two proteins related to adipogenesis, all-trans-retinol 13,14-reductase (RETSAT) and lipoprotein lipase (LPL) as well as two proteins involved in insulin sensitivity, elongation factor 1-delta (EEF1D) and integrin-β1 (ITB1).

3.3 Ovariectomy increased saturated fatty acid content and disturbed the polyunsaturated fatty acid ratios in RAT
The results regarding the fatty acid analyses are depicted in Table 3. The Ovx group showed increased content of lauric, myristic and palmitic acids in relation to Sham. Increased total saturated fatty acids (SFA), alongside increased palmitic/stearic ratio, was also found in Ovx group. Estrogen replacement brought the content of lauric and myristic acids, as well as total SFA, back to levels comparable to Sham.

The monounsaturated fatty acids (MUFAs) myristoleic and palmitoleic acids levels were higher in Ovx group as compared to Sham, but comparable to Sham when estrogen replacement was introduced. Eicosenoic acid was lower in both Ovx and Ovx+E2 groups as compared to Sham. The palmitic/palmitoleic ratio was significantly decreased in Ovx, but normalized in Ovx+E2 group.

Ovariectomy led to a significant disturbance in the proportions of various polyunsaturated fatty acids (PUFAs). The essential fatty acids alpha-linoleic and linoleic acids were respectively increased and decreased in the Ovx group, as compared to the Sham group. Estrogen replacement was successful in returning linoleic acid back to a level comparable to Sham, but the same was not found for alpha-linolenic acid. A significant increase in eicopentaenoic acid (EPA) was found in Ovx and Ovx+E2 groups. An increase in arachidonic acid (AA) was also found in both groups, as compared to the Sham group, but such difference did not reach statistically significant levels.

Ovariectomy increased 0.33% of the total n-3 while decreasing 3% of the total n-6, in comparison to the Sham group. Such differences reached statistically significant levels, and whilst they remained for total n-3 in Ovx+E2 group, they were no longer statistically different for n-6 in Ovx+E2 group. The total n-6/n-3 ratio was lower in Ovx and Ovx+E2 groups, in comparison to the Sham group; however, the total SFA/PUFA ratio was higher in Ovx, and similar in Ovx+E2, when compared to Sham.

4. Discussion

Menopause has been considered as an important factor leading to obesity, mainly due to the shift in fat distribution from subcutaneous to visceral (24). We thus hypothesized that the
loss of ovarian hormones could lead to impairment of protein and lipid regulation in the visceral adipose tissue. In order to test this hypothesis, we used shotgun proteomics, along with fatty acid profiling, to determine proteins and lipids affected and to evaluate to what extent estrogen replacement would modify the ovariectomy-induced alterations.

In the rat, the visceral adipose tissue is comprised by the retroperitoneal, perirenal, perigonadal, and mesenteric depots (38). Ovariectomy has been shown to induce significant changes in RAT metabolism (1, 12, 49).

Ovariectomy increased body weight gain and adiposity due to increased feed efficiency, as food intake was not increased. Insulin and leptin levels, leptin/adiponectin ratio, and HOMA indexes also increased after ovariectomy and these alterations were attenuated by the estradiol replacement therapy, as we have previously shown (5). The estrogen replacement dose was chosen as to be compatible with the human dosage of the average transdermal replacement therapy for postmenopausal women (22, 48).

The pathway analyses indicated that the ovariectomy had a large impact on the metabolism of lipids, affecting fatty acid metabolism/mitochondrial fatty-acids β-oxidation pathway and the fatty acyl-CoA biosynthesis pathway. Figure 5 depicts the main effects of ovariectomy in these pathways, which will be addressed below.

The activation of free fatty acids by their association with coenzyme-A, yielding fatty-acyl CoA, is promoted by the ligases enzymes and represents a crucial step both for β-oxidation and synthesis of triacylglycerols and other lipids. In comparison to the Sham group, we observed down regulation of the protein ACSL5, a feature that has been associated with low β-oxidation rates (27), and increased phosphorylation of the protein (ACSL1). The present result on ACSL5 agrees with a previous report of its reduced gene expression in diabetic mice (32). The phosphorylation sites of the ACSL1 found in the present study (Thr27 and Thr40) have not been reported previously while a threonine phosphorylation site (Thr85) was described in liver mitochondria of normal rats under physiological conditions (13).

The acyl-CoA dehydrogenases, responsible for fatty acyl-CoA desaturation in the β-oxidation pathway (19), also showed an effect of ovariectomy. The protein ACADS showed downregulation in comparison to the Sham group. This is in accordance with a report in the
white adipose tissue from obese subjects (39). The ACADL and ACADVL proteins presented increased phosphorylation (Ser210 and Ser418, respectively), as compared to the Sham group. While ACADVL has no phosphorylation sites previously reported, there is a previous description of decreased serine phosphorylation of ACADL (Ser28/Ser30) after ischemia in ovarian tumor grafts (41) and a demonstration that its decreased phosphorylation (Ser586) in fibrotic lung cells was associated with higher lipid peroxidation in comparison to normal lung cells (24).

Two other enzymes of the mitochondrial fatty-acids β–oxidation pathway, ACOT2 and ECI1, showed downregulation in response to ovariectomy. Located in the mitochondrial matrix, ACOT2 targets mainly long-chain fatty acyl-CoAs and catalyzes their hydrolysis to the free fatty acids and CoA. This mechanism has been proposed to enhance hepatic long-chain fatty acids oxidation by preventing accumulation of fatty acyl-CoA during high rates of hepatic β-oxidation (43, 61). ECI1 is involved in the process of oxidation of unsaturated fatty acids and has been reported to be downregulated in white adipose tissue from Zucker diabetic-fatty female rats (34).

Ovariectomy also affected proteins involved in fatty acids synthesis. The protein ACC1 showed decreased phosphorylation at Thr2278, attenuated by estradiol replacement. ACC1 converts acetyl-CoA into malonyl-CoA during de novo lipogenesis. Although the phosphorylation site found in the present study has not been previously described, the phosphorylation of at least other five sites was demonstrated to inhibit the protein activity, resulting in lower malonyl-CoA levels (25, 18). In addition, the protein FAS showed increased phosphorylation at Ser725, in comparison to the Sham group. FAS is a key enzyme in the lipogenesis process, catalyzing the conversion of malonyl-CoA to palmitic acid (59). FAS phosphorylation at Ser725 was increased in the liver of mice after re-feeding, a situation favoring lipogenesis (65). Ovariectomy has been shown to increase FAS protein expression in the retroperitoneal adipose tissue of rats (31). The present observation that the lipid metabolism alterations induced by ovariectomy were attenuated by estradiol replacement agrees with a report of decreased lipogenesis by estradiol through inhibition of ACC1 and FAS (37).
Ovariectomy also modulated proteins involved in the adipogenesis process. The protein RETSAT showed increased expression and decreased phosphorylation in comparison to the Sham group. This protein favors adipocyte differentiation under normal metabolic conditions and was shown to be induced during adipogenesis, being positively regulated by the transcription factor peroxisome proliferator activated receptor \(\gamma \). Furthermore, the downregulation of the protein has been shown to inhibit adipogenesis (44, 57). Because the present Ovx animals showed increased body fat and mild increases in adipose tissue cytokine levels, it can be suggested that the upregulated RETSAT indicates a state of active fat accumulation. Moreover, further studies are necessary to elucidate the consequences of reduced phosphorylation of the sites found in the present study (Ser\(^{404}/\)Tyr\(^{409}\)).

The protein LPL showed increased expression and phosphorylation in the Ovx groups, as compared to the Sham group, indicating a high capacity of the retroperitoneal adipose tissue for uptake of lipoprotein-derived free fatty acids. This enzyme has also been implicated in adipocyte differentiation and it has shown increased expression in adipose-derived mesenchymal stem cells from ovariectomized mice (17). Moreover, estrogens have been shown to decrease LPL expression in the subcutaneous fat of premenopausal women (52). Of note, we were not able to find previous records of the phosphorylation site found in the present study (Tyr\(^{191}\)).

Since ovariectomized animals were obese and showed alterations in many proteins involved in lipid metabolism, we hypothesized that fatty acid composition of RAT could be affected. Data about the effects of ovariectomy-induced obesity on fatty acid profile are scarce, although the pro-inflammatory state of common obesity has been associated to SFA in the adipose tissue (10). Our results showed an increased palmitic acid and total SFA contents of RAT. Estrogen replacement was able to attenuate these effects. In postmenopausal obese women, visceral adipose tissue inflammation has been related to accumulation of SFA, especially palmitic acid (66). Although palmitic acid has been shown to impact fatty acids metabolism by upregulating the expression of ACSLs (47, 53), high levels have been found to lower fatty acid oxidation due to inhibition of carnitine-palmitoyltransferase 1A (34).
Ovariectomy also increased the percentage of the monounsaturated palmitoleic fatty acid. Endogenous non-dietary palmitoleic acid originates mainly from *de novo* lipogenesis in white adipose tissue, and has been recently considered as a lipokine, since it is released from the tissue and acts on distant cells. However, its metabolic effects have not been elucidated, as both deleterious and beneficial effects on adiposity, insulin sensitivity and lipid profile have been described (16). In the present study, its higher levels after ovariectomy are consistent with the proteomic results indicating a high lipogenesis rate, attenuated by estradiol replacement.

Regarding polyunsaturated fatty acids, our results showed a decrease in linoleic acid (n-6) and an increase in alpha-linolenic acid (n-3). Linoleic acid is a precursor of pro-inflammatory lipid mediators such as prostaglandins and leukotrienes (54). Although we did not measure these factors, it is fair to speculate that the decrease in linoleic acid in the ovariectomized animals was a consequence of its recruitment for the production of pro-inflammatory factors, since we had indications of an inflamed status induced by ovariectomy, as discussed above. Given the fact that the sum of PUFAs did not differ among the groups, the increase in n-3 was a direct consequence of the n-6 decrease.

These present findings indicate that ovariectomy favored a disruption of fat metabolism, which may have been relevant in the development of obesity. However, on the basis of our observations, it is not possible to rule out that, rather than a cause, the observed changes in lipid metabolism were a consequence of obesity.

The pathway analysis also showed that several proteins that take part in the innate immune system, which orchestrates inflammation (15), were modulated by ovariectomy. CD36 produced in macrophages is considered a pro-inflammatory marker. In the present study, this protein was upregulated by ovariectomy, in comparison to the Sham group, in agreement with findings in the visceral adipose tissue of postmenopausal women, obese individuals of both genres, and in the perivascular adipose tissue of diabetic rats (4, 30). CD36 is also involved in fatty acid translocation, thus influencing fat storage. Increased mRNA levels of CD36 in liver and visceral adipose tissue of ovariectomized mice has been associated with hepatic steatosis and increased visceral fat mass (50). Additionally, CD36−/− mice have shown enhanced fatty
acid oxidation measured in muscle cells lines (55). These data agree with the present suggestion of impaired fatty acid oxidation in the visceral adipose tissue after ovariectomy.

Although not shown in the pathway analysis, it is relevant to notice two other proteins altered by ovariectomy which have important inflammatory roles. The protein CAP1 showed increased expression and phosphorylation, in comparison to the Sham group. In monocytes, this protein was described to function as a receptor for adipocyte-derived resistin, which in turn regulates inflammation signaling, leading to the release of pro-inflammatory cytokines. Its expression was found to be increased in cells extracted from white adipose tissue of obese humans (9). The phosphorylation at Thr^{306}/Ser^{307} identified in the present study were found to be increased in response to lipopolysaccharide-induced inflammation in macrophages (29), which corroborates the idea of an overall inflammatory status of our experimental model. Moreover, the protein RT1-AW2 also showed increased expression and phosphorylation in comparison to the Sham group. This protein is involved in immune response and was shown to be upregulated in the secretome of hepatocytes of rats treated with hepato-carcinogenic substances, a condition also associated with a pro-inflammatory environment (64). The phosphorylation site described in the present study (Ser^{295}) has not been described yet but the Ser^{354} phosphorylation was found to be increased in liver mitochondria from obese mice (26).

Estrogen replacement attenuated the ovariectomy-induced changes regarding the proteins CD36, CAP1 and RT1-AW2. These results are compatible with the increase in leptin levels as well as a decrease in leptin/adiponectin ratio and suggest an overall effect of estrogen replacement in reducing the inflammation status. This is compatible with reports that estradiol may regulate cell recruitment to inflammatory sites and decrease the production of pro-inflammatory cytokines, balancing the acute innate immune response (60).

Regarding the glucose metabolism impairment mentioned above, two proteins that play a role in insulin resistance were shown to be modulated by ovariectomy. One of them is EEF1D, which is involved in the protein elongation steps during the synthesis of a variety of proteins, acting in the regulation of translation and transcription (56). Insulin stimulates the activity of this enzyme, mainly through phosphorylation processes in adipose tissue, as observed after *in vitro* experiments using adipose-derived cells 3T3-L1 (8). The fact that this protein showed
downregulated expression in the Ovx group, as compared to the Sham group, is compatible with our suggestion of insulin resistance after ovariectomy. The other protein is ITB1, which showed decreased expression and increased phosphorylation induced by ovariectomy, as compared to the Sham group. The protein is localized in the cell membrane and participates in the signaling between extracellular matrix and the intracellular environment, and dysfunctional integrins have been related to insulin resistance (35). In visceral fat pads isolated from chow-fed rats, ITB1 potentiated the ability of insulin to enhance tyrosine phosphorylation of insulin receptor substrate 1 (21). Increased phosphorylation at Ser263 described in the present study has been previously found in breast cancer, but the consequences of this cancer-induced alteration on ITB1 function have not yet been explored (42). Since this modification appeared in the present study in an obese pathological condition, it may be not inferred whether it yielded a deleterious effect or, alternatively, whether it represented a counter-regulatory mechanism to insulin resistance.

5. Conclusion

The present results indicate that ovariectomy favored lipogenesis while it impaired fatty acids oxidation, and induced a pro-inflammatory state in the RAT. These effects are consistent with the findings of high adiposity, hyperleptinemia, and impaired insulin sensitivity. The observed alterations were partially attenuated by estradiol replacement. The data point to a role of disrupted lipid metabolism in adipose tissue in the genesis of obesity after menopause.
Acknowledgements

The authors thank Mauro Cardoso Pereira for animal care, Nelson Inácio Pinto for assistance throughout the treatments and Debora Estadella for the contribution regarding Figure 4 creation.

Funding Statement

This study was financed by the Brazilian Agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grants 453924/2014-0 and 309505/2017-8), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant No. 2012/03172-4)

Conflict of Interests/ Financial Disclosure Statement

The authors certify that they comply with the ethical guidelines for authorship and publishing of the American Journal of Physiology Endocrinology and Metabolism. The authors declare that they have no conflict of interest, be it financial or not.

Author Contribution Statement

V.T.B. performed all experiments and wrote the manuscript
A.P.P. participated in all experiments and supervised results interpretation;
D.M.S. and C.B.T. participated in the proteomic analyses and results interpretation;
E.G.L contributed to the statistical analyses and results interpretation;
A.A.B participated in the lipid profile analysis and results interpretation;
C.M.O.N. and L.M.O provided essential reagents and were responsible for Elisa assays;
E.B.R. supervised the whole project and the manuscript writing.
References

32. **Lewin TM, et al.** Acyl-CoA synthetase isoforms 1, 4 and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. *J Biol Chem* 276 (24674-24679), 2001.

Figure legends

FIGURE 1: Separation of the groups using multivariate analyses of proteome data
(A) - Supervised PLSDA analyses based on 994 protein intensities. The principal components explaining the separation are 1 and 4; Q2=0.7; R2=0.9. (B) - Supervised PLSDA analyses based on 1074 peptide intensities. The principal components explaining the separation are 1 and 2; Q2= 0.6; R2= 0.9.

FIGURE 2: Representation of the innate immune metabolism pathway significantly and their associated proteins and phosphopeptides
Pathway enrichment analysis: Fisher’s exact test followed by Bonferroni correction. The colored bars indicate the proteins expression/phosphorylation peak intensities. All 6 samples in each experimental group were included in the analyses

FIGURE 3: Representation of the fatty acyl-CoA biosynthesis (A) and metabolism of lipids (B) pathways and their associated proteins and phosphopeptides
Pathway enrichment analysis: Fisher’s exact test followed by Bonferroni correction. The colored bars indicate the proteins expression/phosphorylation peak intensities. All 6 samples in each experimental group were included in the analyses

FIGURE 4: Representation of the metabolism of vitamins and cofactors (A) and integration of energy metabolism (B) pathways and their associated proteins and phosphopeptides
Pathway enrichment analysis: Fisher’s exact test followed by Bonferroni correction. The colored bars indicate the proteins expression/phosphorylation peak intensities. All 6 samples in each experimental group were included in the analyses
FIGURE 5: Summary of the alterations in lipid metabolism induced by ovariectomy, as indicated by the proteome/phosphoproteome analysis

Red triangles indicate reduced protein expression; Arrows followed by amino acid symbol indicate reduced (↓) or increased (↑) phosphorylation of the residue in the protein shown.

ACSL5: Long-chain fatty acid-CoA ligase 5; ACSL1: Long-chain fatty acid-CoA ligase 1; ACADS: Short-chain specific acyl-CoA dehydrogenase; ACADL: Long-chain specific acyl-CoA dehydrogenase; ACADVL: Very long-chain specific acyl-CoA dehydrogenase; ACOT2: Acyl-Coenzyme A thioesterase type 2; EC11: Enoyl-CoA delta isomerase-1; ACC1: Acetyl-CoA carboxylase-1; FAS: Fatty acid synthase.
A Pathway Protein Sham Ovx Ovx+E2
Fatty Acyl-CoA Biosynthesis

- ATP-citrate synthase (Ser⁶⁷)
- Long-chain-fatty-acid--CoA ligase 1 (Thr²⁷/Thr⁴⁰)
- Fatty acid synthase (Ser⁷²⁴)
- Acetyl-CoA carboxylase 1 (Thr²²⁷⁸)
- Long-chain-fatty-acid--CoA ligase 5

B Pathway Protein Sham Ovx Ovx+E2
Metabolism of lipids

- Monoglyceride lipase
- Aldose reductase
- Acid ceramidase
- Fatty acid-binding protein (Tyr⁹⁹²)
- Extended synaptotagmin-1
- Fatty acid synthase (Ser⁷²⁴)
- Long-chain-fatty-acid--CoA ligase 1 (Thr²⁷/Thr⁴⁰)
- Enoyl-CoA delta isomerase 2 mitochondria
- ATP-citrate synthase (Ser³⁶⁷)
- Glutathione peroxidase 1 (Ser⁹/Ser¹⁹/Ser¹³)
- Acetyl-CoA carboxylase 1 (Thr²²⁷⁸)
- Peroxisomal acyl-coenzyme A oxidase 3 (Ser⁵⁷⁸)
- Aldo-keto reductase family 1 member C21 (Thr²⁷⁰)
- Long-chain-fatty-acid--CoA ligase 5
- Acyl-coenzyme A thioesterase 2 mitochondria
- Short-chain specific acyl-CoA dehydrogenase
- Enoyl-CoA delta isomerase 1 mitochondria
- Acyl-CoA-binding protein
- Long-chain specific acyl-CoA dehydrogenase (Ser³¹⁰)
- Very long-chain specific acyl-CoA dehydrogenase (Ser⁴¹⁸)

Lower expression/phosphorylation Intermediate expression/phosphorylation Higher expression/phosphorylation
Innate immune metabolism

Protease subunit alpha type-4 (Thr²⁹/ Ser¹³)
Thioredoxin
cAMP-dependent protein kinase catalytic subunit alpha
Tyrosine-protein kinase Lyn
Ig gamma-1 chain C region
Unconventional myosin-X
Complement component C9 (Thr⁴⁹²)
Complement C4 (Thr¹²⁵)
Rab GDP dissociation inhibitor beta (Tyr⁵³)
Complement C3 (Ser⁵²⁷)
Ras-related protein Rab-3A
Peroxiredoxin-4
Ras-related protein Rab-7a (Thr⁹¹)
Ras-related protein Rab-14 (Ser⁹)
ATP-citrate synthase (Ser³⁶⁷)
Fructose-bisphosphate aldolase A (Thr⁹)
Pyruvate kinase PKM (Ser⁷)
Isocitrate dehydrogenase [NADP] cytoplasmic (Thr³⁵⁹)
Annexin A2 (Thr⁶¹/ Ser⁶⁴)
Platelet glycoprotein 4
Acid ceramidase
Fatty acid-binding protein 5 (Thr¹⁰⁶)
Protein S100-A11 (Ser¹¹)
Elongation factor 2 (Ser⁵₄¹)
Phosphoglucomutase-1 (Thr⁷¹²)
Synaptic vesicle membrane protein VAT-1 homolog

Neutrophil degradation

Sham | Ovx | Ovx+E2
A

Pathway: Metabolism of vitamins and cofactors

Protein:
- Isocitrate dehydrogenase [NADP] cytoplasmic (Thr^{359})
- Lipoprotein lipase
- Fatty acid synthase (Ser^{724})
- Aldose reductase-related protein 1
- Retinol-binding protein 4
- Acetyl-CoA carboxylase 1 (Thr^{2278})
- Cytochrome b5
- Pyruvate carboxylase mitochondrial
- Aldo-keto reductase family 1 member C21 (Thr^{270})

B

Pathway: Integration of energy metabolism

Protein:
- Guanine nucleotide-binding protein G(i) alpha-2 (Tyr^{155})
- Guanine nucleotide-binding protein subunit alpha-11
- cAMP-dependent protein kinase catalytic subunit alpha
- Transketolase (Ser^{449})
- 14-3-3 protein theta (Thr^{141})
- cAMP-dependent protein kinase type II-beta
- Acetyl-CoA carboxylase 1 (Thr^{2278})
- Fatty acid synthase (Ser^{724})
- ATP-citrate synthase (Ser^{367})
Table 1: Body and serum parameters

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>Ovx</th>
<th>Ovx+E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body weight (g)</td>
<td>264.79 ± 5.22</td>
<td>263.00 ± 3.79</td>
<td>263.51 ± 5.02</td>
</tr>
<tr>
<td>Final body weight (g)</td>
<td>280.84 (272.38 - 285.75)</td>
<td>338.00 (336.00 - 339.50)*</td>
<td>335.71 (325.89 - 337.00)*</td>
</tr>
<tr>
<td>Cumulative food intake (Kcal)</td>
<td>526.36 ± 14.87</td>
<td>570.90 ± 12.48</td>
<td>613.63 ± 13.01*</td>
</tr>
<tr>
<td>Feed efficiency (g/Kcal)</td>
<td>2.72 ± 0.54</td>
<td>13.52 ± 0.66*</td>
<td>11.98 ± 0.81*</td>
</tr>
<tr>
<td>Uterus (g)</td>
<td>0.43 ± 0.03</td>
<td>0.11 ± 0.02*</td>
<td>0.15 ± 0.02*</td>
</tr>
<tr>
<td>Total fat mass (g)</td>
<td>10.37 ± 0.89</td>
<td>17.71 ± 1.22*</td>
<td>15.89 ± 1.11*</td>
</tr>
<tr>
<td>Retroperitoneal fat mass (g)</td>
<td>3.49 ± 0.30</td>
<td>7.23 ± 0.56*</td>
<td>6.02 ± 0.46*</td>
</tr>
<tr>
<td>Mesenteric fat mass (g)</td>
<td>1.67 ± 0.17</td>
<td>3.75 ± 1.20*</td>
<td>3.38 ± 0.80*</td>
</tr>
<tr>
<td>Periovarian fat mass (g)</td>
<td>4.97 ± 0.44</td>
<td>6.15 ± 0.48</td>
<td>5.98 ± 0.49</td>
</tr>
<tr>
<td>Leptin (ng/mL)</td>
<td>2.17 (1.84 - 2.61)</td>
<td>10.06 (7.80-012.52)*#</td>
<td>5.97 (4.45 - 9.89)</td>
</tr>
<tr>
<td>Adiponectin (µg/mL)</td>
<td>5.65 ± 0.59</td>
<td>8.06 ± 1.04</td>
<td>7.67 ± 0.91</td>
</tr>
<tr>
<td>Leptin/Adiponectin</td>
<td>0.41 ± 0.06</td>
<td>1.42 ± 0.29*#</td>
<td>0.89 ± 0.18</td>
</tr>
<tr>
<td>TNF-α (pg/mg of protein)</td>
<td>7.04 ± 0.72</td>
<td>7.45 ± 0.78</td>
<td>6.96 ± 2.34</td>
</tr>
<tr>
<td>IL-6 (pg/mg of protein)</td>
<td>32.2 ± 5.28</td>
<td>54.6 ± 17.3</td>
<td>26.8 ± 2.62</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>92.80 ± 2.98</td>
<td>105.72 ± 6.38</td>
<td>103.88 ± 6.29</td>
</tr>
<tr>
<td>Insulin (ng/mL)</td>
<td>0.56 ± 0.06</td>
<td>2.32 ± 0.20*#</td>
<td>1.31 ± 0.12*</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>3.18 (2.32 - 4.25)</td>
<td>14.37 (12.08 - 19.07)*#</td>
<td>7.93 (6.26 - 8.28)</td>
</tr>
<tr>
<td>HOMA-β</td>
<td>0.18 (0.14 - 0.23)</td>
<td>0.52 (0.38 - 0.72)*#</td>
<td>0.29 (0.24 - 0.45)</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>115.46 (104.96 - 121.76)</td>
<td>140.84 (119.08 - 193.13)</td>
<td>126.34 (119.85 - 133.97)</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>205.73 (179.01 - 251.91)</td>
<td>163.17 (146.18 - 174.05)</td>
<td>142.37 (135.50 - 157.63)</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>99.18 (94.67 - 108.20)</td>
<td>111.27 (105.33 - 118.85)</td>
<td>122.54 (107.79 - 220.49)</td>
</tr>
</tbody>
</table>

Data presented as mean ± SEM for variables with normal distribution or median-interquartile range (Q1-Q3) for variables not normally distributed. n=6 animals per group. * p < 0.05 vs Sham; # p < 0.05 vs Ovx+E2.
<table>
<thead>
<tr>
<th>Protein (Phosphosite)</th>
<th>Expression fold-change</th>
<th></th>
<th>Phosphorylation fold-change</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ovx/Sham</td>
<td>Ovx+E2/Sham</td>
<td>Ovx+E2/Ovx</td>
<td>Ovx/Sham</td>
</tr>
<tr>
<td>Long-chain-fatty-acid-CoA ligase 5</td>
<td>0.61</td>
<td>0.72</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>Long-chain-fatty-acid-CoA ligase 1 (Thr27/Thr40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-chain specific acyl-CoA dehydrogenase, mitochondrial</td>
<td>0.59</td>
<td>0.63</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>Long-chain specific acyl-CoA dehydrogenase, mitochondrial (Ser20)</td>
<td></td>
<td></td>
<td></td>
<td>27.25</td>
</tr>
<tr>
<td>Very long-chain specific acyl-CoA dehydrogenase, mitochondrial (Ser418)</td>
<td></td>
<td></td>
<td></td>
<td>4.49</td>
</tr>
<tr>
<td>Acyl-coenzyme A thioesterase 2, mitochondrial</td>
<td>0.62</td>
<td>0.70</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Enoyl-CoA delta isomerase 1, mitochondrial</td>
<td>0.54</td>
<td>0.56</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>Acetyl-CoA carboxylase (Thr278)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatty acid synthase (Ser725)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-trans-retinol 13,14-reductase (Ser404/Tyr409)</td>
<td>1.75</td>
<td>1.52</td>
<td>0.87</td>
<td>0.96</td>
</tr>
<tr>
<td>Lipoprotein lipase (Tyr191)</td>
<td>2.15</td>
<td>2.03</td>
<td>0.94</td>
<td>1.78</td>
</tr>
<tr>
<td>Platelet glycoprotein 4</td>
<td>1.53</td>
<td>1.33</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Adenylyl cyclase-associated protein 1 (Ser300/Thr306/Ser307)</td>
<td>2.12</td>
<td>1.01</td>
<td>0.47</td>
<td>18.49</td>
</tr>
<tr>
<td>Class I histocompatibility antigen, Non-RT1.A alpha-1 chain (Ser295)</td>
<td>12.80</td>
<td>2.61</td>
<td>0.20</td>
<td>12.79</td>
</tr>
<tr>
<td>Elongation factor 1-delta (Ser447)</td>
<td>0.65</td>
<td>0.76</td>
<td>1.18</td>
<td>0.23</td>
</tr>
<tr>
<td>Integrin beta-1 (Ser263)</td>
<td>0.42</td>
<td>0.57</td>
<td>0.82</td>
<td>2.23</td>
</tr>
</tbody>
</table>
Table 3. Fatty acid composition of RAT total lipid

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>% of total fatty acids</th>
<th>Sham</th>
<th>Ovx</th>
<th>Ovx+E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12:0 Lauric acid</td>
<td>0.04 ± 0.01</td>
<td>0.05 ± 0.01*</td>
<td>0.04 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>C14:0 Myristic acid</td>
<td>0.62 ± 0.06</td>
<td>0.75 ± 0.07*</td>
<td>0.67 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>C16:0 Palmitic acid</td>
<td>18.7 ± 1.4</td>
<td>21.2 ± 1.4*</td>
<td>20.4 ± 1.2*</td>
<td></td>
</tr>
<tr>
<td>C18:0 Stearic acid</td>
<td>3.35 ± 0.21</td>
<td>3.21 ± 0.37</td>
<td>3.2 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>C20:0 Arachidinic acid</td>
<td>0.06 ± 0.01</td>
<td>0.04 ± 0.01*</td>
<td>0.05 ± 0.01*</td>
<td></td>
</tr>
<tr>
<td>C22:0 Behenic acid</td>
<td>0.018 ± 0.001</td>
<td>0.009 ± 0.001*</td>
<td>0.012 ± 0.001*</td>
<td></td>
</tr>
<tr>
<td>C16:0/C18:0</td>
<td>5.75 ± 0.39</td>
<td>6.67 ± 0.88*</td>
<td>6.3 ± 0.57</td>
<td></td>
</tr>
<tr>
<td>∑ SFA</td>
<td>22.8 ± 1.5</td>
<td>25.3 ± 1.5*</td>
<td>24.4 ± 1.3</td>
<td></td>
</tr>
<tr>
<td>C14:1n-7 Myristoleic acid</td>
<td>0.02 ± 0.01</td>
<td>0.03 ± 0.01*</td>
<td>0.02 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>C16:1n-7 Palmitoleic acid</td>
<td>1.55 ± 0.3</td>
<td>2.36 ± 0.59*</td>
<td>1.8 ± 0.52</td>
<td></td>
</tr>
<tr>
<td>C18:1n-9 Oleic acid</td>
<td>27.7 ± 1.2</td>
<td>27.5 ± 1.7</td>
<td>27.2 ± 0.9</td>
<td></td>
</tr>
<tr>
<td>C18:1n7 cis-vaccenic acid</td>
<td>2.32 ± 0.18</td>
<td>2.23 ± 0.12</td>
<td>2.31 ± 0.17</td>
<td></td>
</tr>
<tr>
<td>C20:1n9 Eicosenoic acid</td>
<td>0.18 ± 0.02</td>
<td>0.15 ± 0.01*</td>
<td>0.16 ± 0.01*</td>
<td></td>
</tr>
<tr>
<td>C18/C18:1</td>
<td>0.11 ± 0.01</td>
<td>0.11 ± 0.02</td>
<td>0.11 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>C16:0/C16:1n-7</td>
<td>12.2 ± 1.7</td>
<td>9.38 ± 1.8*</td>
<td>12.3 ± 2.9</td>
<td></td>
</tr>
<tr>
<td>∑ MUFA</td>
<td>31.8 ± 1.3</td>
<td>32.4 ± 2.3</td>
<td>31.4 ± 1.4</td>
<td></td>
</tr>
<tr>
<td>C18:3n-3 Alpha-linolenic acid</td>
<td>1.50 ± 0.18</td>
<td>1.81 ± 0.14*</td>
<td>1.84 ± 0.05*</td>
<td></td>
</tr>
<tr>
<td>C20:5n-3 Eicosapentaenoic acid (EPA)</td>
<td>0.02 ± 0.01</td>
<td>0.03 ± 0.001*</td>
<td>0.03 ± 0.01*</td>
<td></td>
</tr>
<tr>
<td>C22:5n-3 Docosapentaenoic acid (DPA)</td>
<td>0.09 ± 0.02</td>
<td>0.09 ± 0.02</td>
<td>0.09 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>C22:6n-3 Docosahexaenoic acid (DHA)</td>
<td>0.16 ± 0.05</td>
<td>0.15 ± 0.06</td>
<td>0.15 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>∑ n-3</td>
<td>1.75 ± 0.28</td>
<td>2.08 ± 0.17*</td>
<td>2.11 ± 0.08*</td>
<td></td>
</tr>
<tr>
<td>C18:2n-6 Linoleic acid</td>
<td>40.14 ± 2.0</td>
<td>37.1 ± 2.8*</td>
<td>38.5 ± 2.3</td>
<td></td>
</tr>
<tr>
<td>C18:3n-6 Gamma-linolenic acid</td>
<td>0.07 ± 0.02</td>
<td>0.1 ± 0.01*</td>
<td>0.09 ± 0.02*</td>
<td></td>
</tr>
<tr>
<td>C20:2n-6 Eicosadienoic acid (EDA)</td>
<td>0.19 ± 0.02</td>
<td>0.16 ± 0.03*</td>
<td>0.17 ± 0.02*</td>
<td></td>
</tr>
<tr>
<td>C20:3n-6 Dihomo-gamma linoleic acid</td>
<td>0.14 ± 0.02</td>
<td>0.14 ± 0.02</td>
<td>0.15 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>C20:4n-6 Arachidonic acid (AA)</td>
<td>0.63 ± 0.17</td>
<td>0.69 ± 0.18</td>
<td>0.74 ± 0.14</td>
<td></td>
</tr>
<tr>
<td>C22:4n-6 Docosatetraenoic acid</td>
<td>0.23 ± 0.08</td>
<td>0.19 ± 0.06</td>
<td>0.20 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>∑ n-6</td>
<td>41.4 ± 2.2</td>
<td>38.4 ± 3.0*</td>
<td>39.9 ± 2.4</td>
<td></td>
</tr>
<tr>
<td>∑ n-6/ ∑ n-3</td>
<td>24.1 ± 3.9</td>
<td>18.5 ± 0.7*</td>
<td>18.9 ± 0.9*</td>
<td></td>
</tr>
<tr>
<td>∑ PUFA</td>
<td>43.1 ± 2.4</td>
<td>40.5 ± 3.2</td>
<td>42.1 ± 2.5</td>
<td></td>
</tr>
<tr>
<td>∑ SFA/ ∑ PUFA</td>
<td>0.53 ± 0.07</td>
<td>0.63 ± 0.08*</td>
<td>0.58 ± 0.06</td>
<td></td>
</tr>
</tbody>
</table>

Data presented as means ± SEM of the % of total FAs. n=6 for each group. SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; t: trans fatty acids. *p < 0.05 vs Sham; #p < 0.05 Ovx vs Ovx+E2