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Abstract		

Purpose:	 Thermotolerance	 is	 an	 acquired	 state	 of	 increased	 cytoprotection	 achieved	

following	single	or	repeated	exposures	to	heat	stress,	in	part	characterised	by	changes	in	the	

intracellular	 72kda	 heat	 shock	 protein	 (HSP72;	 HSPA1A).	 Females	 have	 demonstrated	

reduced	 exercise	 induced	 HSP72	 in	 comparison	 to	 males.	 This	 study	 examined	 sex	

differences	 in	 heat	 shock	 protein	 72	 messenger	 ribonucleic	 acid	 (Hsp72	 mRNA)	

transcription	during	heat	acclimation	(HA)	to	identify	whether	sex	differences	were	a	result	

of	differential	gene	transcription.		

Methods:	Ten	participants	(5M,	5F)	performed	ten,	90	min	controlled	hyperthermia	[rectal	

temperature	 (Tre)	 ≥	38.5°C]	HA	 sessions	over	12	d.	 Leukocyte	Hsp72	mRNA	was	measured	

pre	 and	 post	 D1,	 D5,	 and	 D10,	 via	 Reverse	 transcription	 polymerase	 chain	 reaction	 (RT-

QPCR).		

Results:	HA	was	evidenced	by	a	reduction	in	resting	Tre	(-0.4	±	0.5°C)	and	resting	heart	rate	

[(HR);	 -13	±	7	beats.min-1]	 following	HA	 (p	≤	0.05).	During	HA	no	difference	 (p	>	0.05)	was	

observed	in	ΔTre	between	males	(D1	=	1.5	±	0.2°C;	D5	=	1.6	±	0.4°C;	D10	=	1.8	±	0.3°C)	and	

females	(D1	=	1.5	±	0.5°C;	D5	=	1.4	±	0.2°C;	D10	=	1.8	±	0.3°C).	This	was	also	true	of	mean	Tre	

demonstrating	 equality	 of	 thermal	 stimuli	 for	mRNA	 transcription	 and	HA.	 There	were	 no	

differences	 (p	 >	 0.05)	 in	Hsp72	mRNA	expression	between	HA	 sessions	 or	 between	males	

(D1	=	+1.8	±	1.5	fold;	D5	=	+2.0	±	1.0	fold;	D10	=	+1.1	±	0.4	fold)	and	females	(D1	=	+2.6	±	1.8	

fold;	D5	=	+1.8	±	1.4	fold;	D10	=	+0.9	±	1.9	fold). 

Conclusions:	 This	 experiment	 demonstrates	 that	 there	 is	 no	 difference	 in	 Hsp72	 mRNA	

increases	 during	 HA	 between	 sexes	 when	 controlled	 hyperthermia	 HA	 is	 utilised.	 Gender	

specific	 differences	 in	 exercise-induced	HSP72	 reported	 elsewhere	 likely	 result	 from	 post-

transcriptional	events.		

Key	words:	

Controlled	hyperthermia;	males;	females;	thermotolerance;	heat	shock	protein.	

	

	



	

	

Introduction		

Repeated	exposure	 to	 stressful	 thermal	 environments	 initiates	heat	 adaptation	 in	humans	

[1].	Heat	adaptation	incorporates	the	interrelated	acclimation	and	thermotolerance	[2,3].	A	

heat	 acclimated	 phenotype	 describes	 enhanced	 heat	 loss	 effector	 responses	 and	

hypervolemia	 which	mitigate	 physiological,	 perceptual,	 and	 functional	 detriments	 to	 heat	

exposure	[1,4].	Thermotolerance	or	acquired	cellular	thermotolerance	 is	 the	nomenclature	

used	to	describe	cellular	adaptations	caused	by	a	single,	or	repeated	severe,	but	non-lethal	

heat	exposure	[e.g.	heat	acclimation	(HA)]	[5].	

HA	repeatedly	initiates	the	heat	shock	response	(HSR),	typically	increasing	various	basal	heat	

shock	proteins	(HSP),	including	HSP72	(HSP72).	In	response	to	10	d	HA,	baseline	intracellular	

HSP72	has	been	shown	to	 increase	by	18%	 [6]	whilst	heat	 shock	protein	72	messenger	

ribonucleic	acid	(Hsp72	mRNA)	demonstrates	a	pattern	whereby	transcription	occurs	within	

each	HA	session	(+195%)	before	returning	to	baseline	24	hr	 later	 [7,8].	These	transient	HA	

mediated	 cellular	 adaptations	 to	 iHSP72	 can	 confer	 cytoprotection	 to	 subsequent	 thermal	

[6]	 and	 non-thermal	 [8]	 stressors	 in	 vitro	 [6]	 and	 in	 vivo	 [9].	 Eloquent	 in-vitro	 data	

demonstrates	that	cytoprotection	to	stress	(thermal	or	otherwise)	is	abolished	when	HSP72	

is	 knocked	 out	 [10–12]	 or	 blocked	 [13].	 HA	mediated	 in-vivo	 cytoprotection	 is	 dependent	

upon	 sufficient	 Hsp72	mRNA	 transcription	 [14]	 and	 subsequent	HSP72	 protein	 translation	

[15].	

Controlled	 hyperthermia	 HA	 results	 in	 a	 greater	 Hsp72	 mRNA	 compared	 with	 matched	

training	in	cool	conditions	as	a	result	of	greater	endogenous	stimuli	for	transcription	[8].	Due	

to	 the	 consistent	 endogenous	 thermal	 stimulus	 there	 is	 an	 equality	 of	 Hsp72	 mRNA	



transcription	during	10	d	controlled	hyperthermia	HA	[7].	Thus,	controlled	hyperthermia	is	a	

preferred	HA	method	compared	with	traditional	exogenously	prescribed	HA	since	it	induces	

robust	Hsp72	mRNA	responses,	ensuring	sufficient	and	consistent	 increases	 in	endogenous	

stimuli	throughout	an	in	vivo	chronic	intervention,	particularly	when	comparing	independent	

groups.			

Morton	 and	 colleagues	 (2009)	 reported	 a	 sex	 specific	 HSP	 adaptation	 in	 human	 skeletal	

muscle	following	six	weeks	of	continuous	and	interval	training.	Specifically,	HSP70	increased	

by	38	±	41%	and	23	±	36%	following	continuous	and	interval	training	respectively	in	males	(n	

=	5);	however	females	(n	=	5)	had	no	changes	(3	±	37%	and	4	±	14%	increase	respectively),	

despite	similar	training	status,	training	prescription	and	training	adaptations	(V"O2	max)	[16].	

Differential	 sex	 responses	 reported	 by	 Morton	 et	 al.	 (2009)	 may	 be	 attributed	 to	

cytoprotective	 effects	 of	 oestrogen.	 Elevated	oestrogen	has	been	 shown	 to	 afford	 cellular	

protection	 [17],	 accordingly	 increased	 oestrogen	 in	 females	 versus	 males	 may	 provide	 a	

mechanism	 for	 inhibited	 changes	 in	 HSP72	 expression	 [18].	 Oestrogen	 binds	 to	 the	

oestrogen	receptor,	which	is	a	member	of	the	steroid	family	of	nuclear	receptors	and	is	the	

oestrogen	 response	 element	 in	 target	 genes,	 leading	 to	 the	 transcriptional	 regulation	 of	

many	 genes	 [19].	 Gillum	 et	 al.	 (2013)	 reported	 higher	 intracellular	 HSP72	 concentrations	

following	a	single	bout	of	exercise	in	the	heat	in	males	compared	with	females	(in	both	the	

follicular	 and	 luteal	 phase	 of	 the	 menstrual	 cycle),	 despite	 similar	 baseline	 values	 and	

identical	endogenous	stimuli	 for	Hsp72	mRNA	transcription	[20].	Differential	sex	responses	

were	 also	 suggested	 to	 be	 a	 result	 of	 oestrogen	 providing	 cellular	 protection	 and	 thus,	

decreasing	the	necessity	for	translation	of	HSP72	in	females.	Although,	stress-mediated	sex	

specific	differences	 in	the	HSP72	have	been	seen	[16,20],	 they	have	not	been	examined	at	

an	mRNA	level	across	the	course	of	controlled	hyperthermia	HA.		



Determination	 of	 Hsp72	 mRNA	 transcription	 in	 females	 would	 facilitate	 identification	 of	

whether	 the	 inhibited	 HSP72	 response	 resulted	 from	 absent	 gene	 signalling,	 or	mitigated	

protein	translation,	potentially	due	to	elevated	oestrogen	[16,20].	Absence	of	data	in	female	

populations	 could	 be	 problematic	 for	 practitioners	who	may	 adopt	 HA	 protocols	 that	 are	

informed	by	mechanistic	cellular	adaptations	from	male	only	cohorts	[7,21].	This	may	reduce	

the	magnitude	to	which	females	are	protected	against	heat	injury	[14].	

The	aim	of	the	current	study	was	to	determine	whether	the	Hsp72	mRNA	response	during	

controlled	hyperthermia	HA,	differed	between	males	and	females.	It	was	hypothesised	that	

the	Hsp72	mRNA	response	would	be	attenuated	 in	 females	compared	to	males	across	 the	

course	of	controlled	hyperthermia	HA.		

Materials	and	methods	

Participants	

Based	on	a	priori	power	analyses	using	previous	experimental	data	with	 identical	methods	

[7,8],	 four	 participants	 in	 each	 group	 would	 result	 in	 95%	 probability	 of	 detecting	 a	

difference	 in	 Hsp72	mRNA	 across	 the	 course	 of	 controlled	 hyperthermia	 HA.	 In	 line	 with	

power	 analysis,	 and	 previous	work	 in	 the	 area	 [16],	 five	males	 and	 five	 females	 (table	 1)	

provided	written	informed	consent	to	participate	in	the	current	study.	All	procedures	were	

performed	 in	 accordance	 with	 the	 ethical	 standards	 of	 the	 institute	 and	 with	 the	 1964	

Declaration	 of	 Helsinki,	 as	 revised	 in	 2013.	 Experimental	 trials	 were	 performed	 between	

07:00	 and	 10:00	 h	 to	 control	 for	 the	 time	 of	 day	 effects	 [7,22].	 Confounding	 variables	 of	

smoking,	caffeine,	glutamine,	alcohol,	generic	supplementation,	and	prior	thermal,	hypoxic,	

and	hyperbaric	exposures	were	all	controlled	in	line	with	previous	work	in	the	field	[23].	To	

control	 for	hormonal	 fluctuations	associated	with	 the	menstrual	 cycle,	 female	participants	

began	testing	during	the	early	follicular	phase	(3	d	after	the	onset	of	menstruation)	of	their	



self-reported	menstrual	cycle;	where	oestrogen	(~30	pg.ml-1)	and	progesterone	(~1	ng.ml-1)	

value	are	expected	to	be	stable.	

Table	1	Participant	characteristics.	Mean	±	SD.	

	

Age	

(years)	

Height	

(cm)	

BM											

(kg)	

V"O2	peak		

(L.min-1)	 (mL.kg-1.min-1)	

Males	(N	=	5)	 24	±	7	 175	±	3	 70.1	±	5.1	 2.64	±	0.34	 45.7	±	4.4	

Females	(N	=	5)	 20	±	1	 163	±	9	 57.1	±	4.9	 3.22	±	0.50	 46.2	±	4.1	

Notes:	BM,	body	mass;	V.O2	peak,	peak	oxygen	uptake		

Preliminary	testing	

2	hr	prior	to	arrival	participants	consumed	3-5	mL.kg-1	of	water.	On	arrival	to	the	laboratory	

for	all	experimental	sessions,	participants	voided	their	bladder	to	provide	a	mid-flow	urine	

sample.	When	two	out	of	the	following	three	criteria	were	achieved,	adequate	hydration	to	

perform	the	trial	was	assumed	based	upon	an	osmolality	value	of	≤	700	mOsm.kg-1,	a	urine	

specific	 gravity	 value	 of	 ≤	 1.020	 or	 body	 mass	 within	 1%	 of	 daily	 average	 [24].	 These	

experimental	 controls	 were	 not	 violated	 for	 any	 participant	 for	 any	 of	 the	 preliminary	 or	

experimental	procedures.	Height	was	measured	using	a	fixed	stadiometer	recorded	to	1	cm	

(Detecto	 Physicians	 Scales;	 Cranlea	 &	 Co.,	 Birmingham,	 UK),	 and	 nude	 body	 mass	 (BM)	

recorded	 to	0.01	 kg	 from	digital	 scales	 (ADAM	GFK	150,	USA).	A	 graded	exercise	 test	was	

performed	 in	 temperate	 laboratory	 conditions	 [20°C,	 40%	 relative	 humidity	 (RH)]	 to	

determine	V*O2	peak	using	a	cycle	ergometer	(Monark	e724,	Vansbro,	Sweden).	The	cycling	

intensity	was	 set	 to	 80	W	 and	 resistance	was	 applied	 to	 the	 flywheel	 to	 elicit	 a	 16	 to	 24	

W.min-1	 increase	 (selected	 depending	 on	 the	 BM	 of	 the	 participant).	 Expired	 air	 was	



measured	 using	 online	 gas	 analysis	 (Metalyzer	 Sport,	 Cortex,	 Germany).	 Peak	 V'O2	 was	

considered	the	highest	V.O2	obtained	in	any	30	s	period.		

Experimental	design		

Two,	 5	 d	 consecutive	 blocks	 (10	 d	 total)	 of	 controlled	 hyperthermia	 HA	 were	 completed	

separated	 by	 48	 hrs.	 Immediately	 prior	 to	 each	 HA	 session	 participants	 inserted	 a	 rectal	

thermometer	(Henley,	Reading,	UK)	10	cm	past	the	anal	sphincter	and	affixed	a	heart	rate	

(HR)	monitor	(Polar	Electro	Oy,	Kempele,	Finland).	After	a	20	min	seated	stabilisation	period,	

resting	measures	were	recorded	and	participants	entered	the	environmental	chamber	(TISS,	

Hampshire,	UK).	The	daily	sessions	consisted	of	a	90	min	exposure	to	40°C,	40%	RH.	Exercise	

intensity	was	set	at	65%	V"O2	peak	from	the	outset	and	adjusted	with	work:	rest	intervals	to	

maintain	 a	 rectal	 temperature	 (Tre)	 ~	 38.5°C	 [25,26].	 Tre	 and	 HR	were	 recorded	 at	 5	min	

intervals.	Fluid	intake	was	restricted	during	the	90	min	HA	session.		

Blood	 sampling,	 RNA	 extraction,	 and	 one-step	 reverse	 transcription	 quantitative	

polymerase	chain	reaction	(RT-qPCR)	

Venous	blood	samples	were	taken	immediately	before	and	immediately	after	exercise	heat	

exposure	on	D1,	D5,	and	D10	of	controlled	hyperthermia	HA.	All	blood	samples	were	drawn	

from	 the	 antecubital	 vein	 into	 6	mL	 EDTA	 Vacuette	 tubes	 (Grenier	 BIO-One,	 Stonehouse,	

UK).	1	mL	of	venous	blood	was	pipetted	 into	10	mL	of	1	 in	10	red	blood	cell	 lysis	 solution	

(10X	red	blood	Cell	Lysis	Solution;	Miltenyi	Biotech,	Bisley,	UK).	Samples	were	incubated	for	

15	min	at	room	temperature	then	isolated	via	centrifugation	at	5°C	and	400	g	for	5	min	and	

washed	twice	in	2	mL	phosphate-buffered	saline	at	400	g	for	5	min	to	isolate	all	leukocytes.	

RNA	was	 then	 extracted	 via	 the	 previously	 validated	 acid	 guanidium	 thiocyanate–phenol–

chloroform	extraction	method	 [27].	Quantity	was	determined	at	 an	optical	 density	 of	 260	



nm	 while	 quality	 was	 determined	 via	 the	 260/280	 and	 260/230	 ratios	 using	 a	 nanodrop	

spectrophotometer	(NanoDrop	2000c;	Thermo	Scientific,	Waltham,	MA,	USA).		

Hsp72-relative	mRNA	expression	(Hsp72	mRNA)	was	quantified	using	Reverse	transcription	

polymerase	chain	reaction	(RT-QPCR).	Primers	(table	2)	were	designed	using	primer	design	

software	(Primer	Quest	and	Oligoanalyzer;	Integrated	DNA	Technologies,	Coralville,	IA,	USA).	

20	μL	reactions	containing	10	μL	SYBR-Green	RT-PCR	Mastermix	(Quantifast	SYBRgreen	Kit;	

Qiagen,	Manchester,	 UK),	 0.15	 μL	 forward	 primer,	 0.15	 μL	 reverse	 primer,	 0.2	 μL	 reverse	

transcription	 mix	 (Quantifast	 RT	 Mix;	 Qiagen)	 and	 9.5	 μL	 sample	 (70	 ng	 RNA/μL)	 were	

prepared	 in	separate	tubes.	Each	PCR	reaction	(Rotorgene	Q;	Qiagen)	was	then	performed	

as	 follows:	10	min,	50°C	 (reverse	 transcription),	5	min	95°C	 (transcriptase	 inactivation	and	

initial	 denaturation);	 followed	 by:	 10	 s,	 95°C	 (denaturation),	 30	 s,	 60°C	 (annealing	 and	

extension)	for	40	cycles.	Fluorescence	was	measured	following	each	cycle	as	a	result	of	the	

incorporation	of	 SYBR	green	dye	 into	 the	amplified	PCR	product.	Melt	 curves	 (50	 to	95°C;	

ramp	protocol	5-s	stages)	were	analysed	for	each	reaction	to	ensure	only	the	single	gene	of	

interest	was	amplified.	The	relative	quantification	of	mRNA	expression	for	each	sample	was	

assessed	 by	 determining	 the	 ratio	 between	 the	 cycle	 threshold	 (CT)	 value	 of	 the	 target	

mRNA	and	the	CT	values	for	β2-microglobulin.	Fold	change	in	relative	mRNA	expression	was	

calculated	using	the	2-ΔΔCT	method	[28].	

Table	2	Hsp72	mRNA	primer	sequences.	

Gene	 NCBI	Accession	#	 Primer	 Sequence	(5’→3’)	
Amplitude	

length	

Β2-	Microglobulin	

(β2-M)	
NM_004048	

Forward	

Reverse	

CCGTGTGAACCATGTGACT	

TGCGGCATCTTCAAACCT	
91	

Hsp72	 NM_005345	 Forward	 CGCAACGTGCTCATCTTTGA	 198	



Reverse	 TCGCTTGTTCTGGCTGATGT	

Notes:	NCBI	National	Centre	for	Biotechnology	Information		

Statistical	analysis	

All	data	were	 first	checked	 for	normality	using	 the	Shapiro-Wilk	method	and	corrected	 for	

sphericity	 using	 the	 Greenhouse	 Geisser	 method.	 A	 two	 way	 mixed	 design	 analysis	 of	

variance	 (ANOVA)	was	performed	 to	determine	differences	between	 the	physiological	and	

performance	 characteristics	 between	D1,	D5,	 and	D10	 in	males	 and	 females.	 A	 three-way	

mixed	design	ANOVA	was	performed	to	identify	differences	between	the	Hsp72	mRNA,	pre	

and	post,	on	D1,	D5,	and	D10	of	controlled	hyperthermia	HA	between	males	and	 females.	

When	 a	 main	 effect	 or	 interaction	 effect	 was	 found,	 results	 were	 followed	 up	 using	 a	

Bonferroni	 corrected	 post	 hoc	 comparison.	 Effect	 sizes	 [partial	 eta	 squared	 (np2)]	 were	

calculated	to	analyse	the	magnitude	of	trends	associated	with	controlled	hyperthermia	HA.	

All	data	were	analysed	using	a	standard	statistical	package	(SPSS	version	20.0,	IBM,	Armonk,	

New	York,	USA)	and	reported	as	mean	±	SD.	Statistical	significance	was	accepted	at	the	level	

of	p	≤	0.05.	

Results	

Evidence	of	heat	acclimation	

Figure	 1	 presents	 the	 resting	 Tre	 and	 resting	 HR	 data	 for	 D1,	 D5,	 and	 D10	 of	 controlled	

hyperthermia	HA.	There	was	a	main	effect	of	day	on	Tre	rest	(F	(2,	16)	=	11.219,	p	≤	0.001,	np2	=	

0.584).	No	differences	were	observed	from	D1	to	D5	(p	=	0.563).	However,	Tre	rest	reduced	

from	D1	to	D10	(p	=	0.027)	and	from	D5	to	D10	(p	=	0.003).	There	was	no	interaction	effect	

between	day	and	sex	on	Tre	rest	(F	 (2,	16)	=	3.287,	p	=	0.064,	np2	=	0.291),	however	this	was	

approaching	significance	with	a	moderate	effect.	The	mean	reduction	in	Tre	rest	from	D1	to	



D5	was	-0.3	±	0.2°C	in	males,	whereas	in	females	there	were	no	changes	(+0.1	±	0.2°C).	The	

mean	reduction	 in	Tre	 rest	 from	D5	to	D10	was	greater	 in	 females	 (-0.4	±	0.2°C)	compared	

with	males	(-0.1	±	0.1°C).		

There	was	a	main	effect	of	day	on	HR	rest	(F	(2,	16)	=	15.227,	p	≤	0.001,	np2	=	0.656).	HR	rest	

reduced	 from	D1	 to	D5	 (p	 =	0.040),	 from	D1	 to	D10	 (p	 =	0.008),	and	 from	D5	 to	D10	 (p	 =	

0.008).	There	was	no	interaction	effect	between	day	and	sex	on	HR	rest	(F	(2,	16)	=	0.383,	p	=	

0.688,	np2	=	0.046).	

Hsp	72	mRNA	responses	to	heat	acclimation	between	sexes	

Figure	 2	 presents	 the	means	 ±	 SD	 for	 Hsp72	mRNA,	 pre	 and	 post	 on	D1,	 D5,	 and	D10	 of	

controlled	hyperthermia	HA	between	males	and	 females.	 Figure	2	also	presents	 individual	

participants	 percentage	 change	 relative	 to	D1.	 There	was	 a	main	 effect	 of	 time	 on	Hsp72	

mRNA	response	(F	(1,8)	=	32.998,	p	≤	0.001,	np2	=	0.805).	Hsp	72	mRNA	increased	pre	to	post	

on	D1	(1.7	±	0.8	fold,	3.9	±	1.8	fold;	p	=	0.003),	D5	(1.6	±	0.8	fold,	3.5	±	1.7	fold;	p	≤	0.001),	

and	D10	(2.0	±	0.7	fold,	3.0	±	1.4	fold;	p	=	0.050).	There	was	no	interaction	effect	between	

time	and	sex	(F	(2,	16)	=	1.027,	p	=	0.381,	np2	=	0.114).	The	increase	in	Hsp72	mRNA	from	pre	

to	post	was	similar	between	males	(D1	=	1.8	±	1.5	fold;	D5	=	2.0	±	1.0	fold;	D10	=	1.1	±	0.4	

fold)	and	females	(D1	=	2.6	±	1.8	fold;	D5	=	1.8	±	1.4	fold;	D10	=	0.9	±	1.9	fold).		

There	was	no	main	effect	of	day	on	Hsp72	mRNA	 (F	 (1,	8)	 =	 0.052,	p	 =	 0.826,	np2	 =	 0.006).	

There	was	no	 interaction	effect	between	day	and	sex	on	Hsp72	mRNA	(F	 (2,	16)	=	1.027,	p	=	

0.381,	np2	 =	0.114).	 There	was	no	 interaction	effect	between	 time,	day	and	 sex	on	Hsp72	

mRNA	(F	(2,	16)	=	0.479,	p	=	0.628,	np2	=	0.057).	

Comparable	heat	acclimation	sessions		



Table	3	presents	the	mean	±	SD	for	performance	and	physiological	variables	during	D1,	D5,	

and	D10	of	controlled	hyperthermia	HA	for	males	and	females.	There	was	no	main	effect	of	

day	(F	(2,	16)	=	3.042,	p	=	0.076,	np2	=	0.275)	or	interaction	effect	between	day	and	sex	(F	(2,	16)	

=	0.234,	p	=	0.794,	np2	=	0.028)	on	ΔTre.	There	was	no	main	effect	of	day	(F	(2,	16)	=	2.536,	p	=	

0.143,	np2	=	0.241)	or	interaction	effect	between	day	and	sex	(F	(2,	16)	=	1.880,	p	=	0.185,	np2	=	

0.190)	on	mean	Tre.	There	was	no	main	effect	for	day	(F	(2,	16)	=	0.488,	p	=	0.623,	np2	=	0.057)	

or	interaction	effect	between	day	and	sex	(F	 (2,	16)	=	0.242,	p	=	0.788,	np2	=	0.029)	on	mean	

HR.	

There	was	a	main	effect	of	day	on	relative	exercise	intensity	(F	(2,	16)	=	21.593,	p	≤	0.001,	np2	=	

0.730).	 Relative	 exercise	 intensity	 was	 higher	 on	 D5	 (p	 ≤	 0.001)	 and	 D10	 (p	 ≤	 0.001)	

compared	to	D1.	There	were	no	differences	between	D5	and	D10	(p	=	0.221).	There	was	no	

interaction	effect	between	day	and	sex	on	relative	exercise	 intensity	 (F	 (2,	16)	=	0.1.034,	p	=	

0.378,	np2	=	0.114).	

	



Table	3	Physiological	and	performance	measures	on	D1,	D5,	and	D10	of	controlled	hyperthermia	heat	acclimation.	Mean	±	SD.	

		 D1	 D5	 D10	

		 Males	 Female	 Males	 Females	 Males	 Females	

Tre	change	(°C)	 1.5	±	0.2	 1.5	±	0.5	 1.6	±	0.4	 1.40	±	0.22	 1.8	±	0.3	 1.8	±	0.3	

Mean	Tre	(°C)		 38.2	±	0.2	 38.3	±	0.2	 38.1	±	0.18	 38.1	±	0.1	 38.2	±	0.1	 38.3	±	0.9	

Mean	HR	(beats.min-1)	 146	±	14	 152	±	9	 145	±	8	 146	±	10	 143	±	12	 148	±	9	

Intensity	(%	V,O2	peak)		 38	±	5	 35	±	8	 50	±	6	 44	±	7	 52	±	11	 53	±	14	

	

Notes:	HR,	heart	rate;	Tre,	rectal	temperature;	V.O2	peak,	peak	oxygen	uptake.	



Discussion		

This	is	the	first	study	to	compare	Hsp72	mRNA	expression	in	males	and	females	across	the	course	of	

controlled	hyperthermia	HA.	 In	contrast	 to	our	hypothesis,	 this	experiment	demonstrates	 that	 the	

Hsp72	mRNA	 response	 is	 similar	 between	males	 and	 females	 on	D1,	 D5,	 and	D10	 of	 a	 controlled	

hyperthermia	HA.	This	suggests	that	sex	differences	in	HSP	following	acute	[20]	and	chronic	[16]	 in	

vivo	exercise	bouts	are	due	 to	post	 transcriptional	events.	Controlled	hyperthermia	HA	resulted	 in	

typical	 phenotypic	 adaptations,	 evidenced	 by	 reduction	 in	 resting	 Tre	and	HR	 across	 the	 course	 of	

controlled	hyperthermia	HA.	Males	and	females	demonstrated	equal	physiological	 responses	(∆Tre,	

mean	Tre	 and	HR)	 to	each	HA	 session	where	Hsp72	mRNA	was	measured.	Accordingly,	 equality	of	

these	 endogenous	 stimuli,	 both	 between	 groups,	 and	 throughout	 HA	 elicited	 equal	 increases	 in	

Hsp72	mRNA	transcription.	Comparable	transcription	of	Hsp72	mRNA	between	males	and	females,	

suggests	 endogenous	 stimuli	which	 induce	 the	HSR	 are	 the	most	 important	 criteria	 for	 increasing	

Hsp72	mRNA	[7],	with	no	sex	dependent	inhibition	or	amplification	in	transcription.	

In	the	current	study,	HA	produced	a	significant	increase	in	Hsp72	mRNA	providing	further	evidence	

that	the	controlled	hyperthermia	HA	method	presents	a	sufficient	endogenous	stress	to	surpass	the	

minimum	requirement	to	elicit	increased	transcription	of	Hsp72	mRNA,	in	both	males	and	females,	

at	the	onset	and	culmination	of	discrete	and	repeated	bouts	of	exercise-heat	stress.	Gibson	et	al.	[7]	

reported	an	increase	in	Hsp72	mRNA	pre	to	post	on	D1	(1.9	±	0.6	fold,	4.9	±	1.1	fold),	D5	(2.3	±	0.8	

fold,	5.3	±	2.5	fold)	and	D10	(2.1	±	0.7	fold,	4.3	±	1.3	fold)	during	a	10	d	controlled	hyperthermia	HA	

protocol	 in	 male	 participants.	 The	 data	 in	 the	 current	 study	 demonstrates	 females	 have	 a	

comparable	magnitude	of	response	to	males.	Accordingly,	this	data	provides	mechanistic	support	for	

practitioners	 prescribing	 controlled	 hyperthermia	 HA	 for	 female	 athletes.	 Sustained	 increases	 in	

Hsp72	mRNA	throughout	the	HA,	 further	demonstrates	the	continued	stimulation	of	the	pathways	

responsible	for	thermotolerance,	i.e.	the	equality	of	HSR,	in	both	males	and	females.		



Previously,	 a	 greater	 HSP72	 increase	 has	 been	 reported	 in	 males	 compared	 to	 females	 [16,20];	

however,	these	studies	measured	the	protein	(HSP)	whereas	the	current	study	measured	the	gene	

(Hsp	mRNA).	Interestingly,	the	current	data	contradicts	Paroo	et	al.	[29]	findings,	who	reported	a	sex	

specific	HSR	 at	 the	 level	 of	 protein	 and	mRNA;	with	male	 rats	 having	 a	 significantly	 higher	HSP70	

(200%	of	control)	and	Hsp70	mRNA	(+900%	of	control)	response	following	60	min	of	exercise	at	70%	

V"O2	max	when	compared	with	females	(HSP70	=	100%	of	control;	Hsp70	mRNA	=	450%	of	control).	

Paroo	 et	 al.	 [29]	 did	 however	 provide	 mechanistic	 evidence	 for	 an	 interaction	 between	 HSP70,	

Hsp70	mRNA	and	oestrogen.	Ovariectomized	female	animals	treated	with	a	placebo	demonstrated	

equivalent	 increases	 in	HSP72	 (+150%	of	control)	and	Hsp72	mRNA	(+1,200%	of	control)	 to	males,	

whilst	 endogenous	oestrogen	 returned	 the	 typical	 inhibited	 female	HSR	 response	 (HSP70	100%	of	

control;	 Hsp70	 mRNA	 300%	 of	 control).	 Methodologically,	 Paroo	 et	 al.	 [29]	 implemented	 the	

northern	blotting	technique	which	is	less	sensitive	than	the	RT-	QPCR	technique	used	in	the	current	

study,	potentially	explaining	the	non-significantly	increased	Hsp72	mRNA.		

Elevated	oestrogen	affords	cellular	protection	[17]	and	thus,	this	cytoprotective	pathway	may	inhibit	

changes	 in	 HSP72	 translation	 [18].	 It	 is	 likely,	 that	 oestrogen	 most	 greatly	 mediates	 post	 Hsp72	

mRNA	 transcriptional	 changes	 which	 inhibit	 the	 translation	 of	 HSP72.	 The	 mechanism	 by	 which	

oestrogen	attenuates	HSR	may	be	mediated	through	its	indirect	antioxidant	properties	by	stabilising	

cellular	membranes	and	attenuating	oxidative	stress;	such	an	effect	could	protect	thermal	sensitive	

cells	against	exercise-induced	damage,	and	thereby	result	in	a	blunted	HSP72	response	[29].	The	lack	

of	 observed	 difference	 between	males	 and	 females	 in	 the	 current	 study,	may	 be	 a	 result	 of	 low	

oestrogen	concentrations,	which	may	not	have	been	sufficient	to	exert	an	antioxidant	effect.		

Limitations	

Future	work	should	 involve	 the	measurement	of	HSP72	protein	alongside	Hsp72	mRNA	across	 the	

course	of	controlled	hyperthermia	HA	in	males	and	females,	to	help	underpin	the	true	effect	of	sex	



on	 the	HSR;	 the	 absence	 of	which	 is	 a	 limitation	 of	 the	 present	 study.	 Furthermore,	 oestrogen	 is	

reported	 to	have	 a	dose	dependent	 inhibition	of	HSP72	expression	 at	 the	 transcription	 level	 [17].	

Future	 work	 should	 investigate	 the	 HSR,	 and	 subsequent	 HSP72	 and	 Hsp72	 mRNA	 response	 to	

discrete	 and	 repeated	 bouts	 of	 exercise-heat	 stress	 in	 high	 and	 low	 oestrogen	 conditions	 and	 in	

post-menopausal	 women,	 who	 naturally	 have	 lower	 oestrogen	 concentrations.	 This	 information	

would	help	practitioners	 implement	controlled	hyperthermia	HA	strategies	 that	ensure	an	optimal	

stimulus	for	cellular	adaptation.	

Conclusion		

Males	and	females	have	equal	Hsp72	mRNA	expression	throughout	10	d	of	controlled	hyperthermia	

HA.	This	suggests	that	there	are	no	differences	in	the	endogenous	criteria	to	transcribe	Hsp72	mRNA	

via	 the	 HSR	 between	 males	 and	 females.	 Differences	 in	 basal	 HSP72	 observed	 elsewhere	 are	

therefore	 likely	 to	 result	 from	 inhibited	 protein	 translation,	 potentially	 due	 to	 the	 influence	 of	

oestrogen.	
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