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Identifying genetic differences between bipolar
disorder and major depression through multiple
genome-wide association analyses
Georgia Panagiotaropoulou, Kajsa-Lotta Georgii Hellberg, Jonathan R. I. Coleman, Darsol Seok,
Janos Kalman, the Bipolar Disorder Working Group of the Psychiatric Genomics Consortium,
the Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium,
the iPSYCH Study Consortium, Philip B. Mitchell, Peter R. Schofield, Andreas J. Forstner, Michael Bauer,
Laura J. Scott, Carlos N. Pato, Michele T. Pato, Qingqin S. Li, George Kirov, Mikael Landén, Lina Jonsson,
Bertram Müller-Myhsok, Jordan W. Smoller, Elisabeth B. Binder, Tanja M. Brückl, Darina Czamara,
Sandra Van der Auwera, Hans J. Grabe, Georg Homuth, Carsten O. Schmidt, James B. Potash,
J. Raymond DePaulo, Fernando S. Goes, Dean F. MacKinnon, Francis M. Mondimore, Myrna M. Weissman,
Jianxin Shi, Mark A. Frye, Joanna M. Biernacka, Andreas Reif, Stephanie H. Witt, René R. Kahn,
Marco M. Boks, Michael J. Owen, Katherine Gordon-Smith, Brittany L. Mitchell, Nicholas G. Martin,
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Cathryn M. Lewis, Gerome Breen, Thomas Werge, Andrew J. Schork, Roel A. Ophoff, Stephan Ripke† and
Loes Olde Loohuis†

Background
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical
practice, with an average delay between symptom onset and
diagnosis of about 7 years. A depressive episode often precedes
the first manic episode,making it difficult to distinguish BPD from
unipolar major depressive disorder (MDD).

Aims
We use genome-wide association analyses (GWAS) to identify
differential genetic factors and to develop predictors based on
polygenic risk scores (PRS) that may aid early differential
diagnosis.

Method
Based on individual genotypes from case–control cohorts of BPD
and MDD shared through the Psychiatric Genomics Consortium,
we compile case–case–control cohorts, applying a careful
quality control procedure. In a resulting cohort of 51 149 indivi-
duals (15 532 BPD patients, 12 920 MDD patients and 22 697
controls), we perform a variety of GWAS and PRS analyses.

Results
Although our GWAS is not well powered to identify genome-wide
significant loci, we find significant chip heritability and demon-
strate the ability of the resulting PRS to distinguish BPD from
MDD, including BPD cases with depressive onset (BPD-D). We
replicate our PRS findings in an independent Danish cohort

(iPSYCH 2015,N = 25 966). We observe strong genetic correlation
between our case–case GWAS and that of case–control BPD.

Conclusions
We find that MDD and BPD, including BPD-D are genetically dis-
tinct. Our findings support that controls, MDD and BPD patients
primarily lie on a continuum of genetic risk. Future studies with
larger and richer samples will likely yield a better understanding
of these findings and enable the development of better genetic
predictors distinguishing BPD and, importantly, BPD-D from
MDD.

Keywords
Bipolar disorder; major depressive disorder; genome-wide
association analysis; polygenic risk scoring; early differential
diagnosis.
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Bipolar disorder (BPD) affects more than 1% of the world’s popula-
tion irrespective of nationality, ethnic origin or socioeconomic
status.1,2 In the World Health Organization’s (WHO’s) World
Mental Health surveys, BPD was ranked as the illness with the
second greatest effect on days out of role.3,4 Accurate diagnosis of
BPD is difficult in clinical practice: mean delay between symptom
onset and diagnosis is around 7 years.5 One of the main reasons
for this delay is that onset is often characterised by a depressive
episode and, until the onset of mania, it is difficult to distinguish
patients with BPD from patients with unipolar major depressive
disorder (MDD).6–12 For example, in studies that have followed

up on patients with an initial MDD diagnosis, approximately
between 10 and 20% demonstrate conversion to BPD over follow-
up periods of about 5–10 years.13,14 The misdiagnosis of BPD can
have significant detrimental consequences, including prescription
of antidepressants in the absence of mood-stabilising drugs, which
can lead to mania,15 poor clinical outcomes and high healthcare
costs. Family-based studies8,16 and our recent genome-wide associ-
ation analyses (GWAS)17 demonstrate independent patterns of
inheritance for mania and depression and initial presentation of
BPD.10 Several recent studies identified BPD genetic liability as a
predictor of conversion to BPD.18,19 Together, these findings
suggest that scrutinising the genetic relationship between these
two core phenotypes will be valuable in understanding risk for† Joint last authors.

The British Journal of Psychiatry (2025)
Page 1 of 12. doi: 10.1192/bjp.2024.125

1
https://doi.org/10.1192/bjp.2024.125 Published online by Cambridge University Press

http://creativecommons.org/licenses/by-nc-sa/4.0
http://creativecommons.org/licenses/by-nc-sa/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1192/bjp.2024.125&domain=pdf
https://doi.org/10.1192/bjp.2024.125


BPD. Although several summary-statistics-based genetic studies
have evaluated genetic similarities and differences between BPD
and MDD,19 no study has yet been performed directly assessing
the genetic differences between these two phenotypes by using a sys-
tematic approach of combining individual-level genetic data from
different cohorts.

Here, we aim to characterise genetic differences between
patients with BPD and patients with MDD by using data from the
Psychiatric Genomics Consortium ((PGC) total N = 68 612 partici-
pants),20,21 with a replication in the iPSYCH case–control study
(total N = 25 966).22,23 In a follow-up analysis, we focus specifically
on patients with a first onset of depression, ‘depression-first BPD’,
who are most difficult to differentiate fromMDD in clinical settings.

Method

Sample description

Our analyses are based on 17 673 BPD and 14 346 MDD cases of
European ancestry from Europe, North America and Australia
from the PGC BPD and MDD Working Group, which comprised
our discovery data.20,21 For a list of included cohorts, their sample
sizes and case control breakdown (see Supplementary Tables 1
and 2 available at https://doi.org/10.1192/bjp.2024.125). The indi-
vidual studies were approved by the respective local ethics commit-
tees and all participants provided written informed consent.

Additionally, summary statistics of GWAS based on ICD-10
secondary care contacts from national health registers24,25 for
both disorders were provided for the iPSYCH case–cohort
study,22,23 which were used for replication. All individuals were
born in Denmark between 1981 and 2008, and enrolled based on
a secondary care contact recorded in national health registers for
BPD (ICD-10 codes: F30–F31) or MDD (ICD-10 codes: F32–F33)
before 2016. Individuals with a schizophrenia (ICD-10 code: F20)
diagnosis were excluded. For iPSYCH samples retrieved from the
Danish Neonatal Screening Biobank, parents were informed at the
time of sampling and given the option to withdraw the sample
from inclusion in research studies.22

Polarity at onset (PAO) was available for a subset of participants
with a BPD diagnosis in the PGC cohorts. For these patients, as in
our previous study,17 PAO was determined by selecting the earliest
age between the onset of mania/hypomania and depression, or as
provided by the cohorts. Patients for whom PAO was available
were categorised into two subgroups: depression before mania/
hypomania (depression-first), and mania before depression of a
mixed onset (mania-first). The latter category includes both partici-
pants whose onset was marked by an episode with mixed features
and participants who had their first manic and depressive episode
within the same year.

For the iPSYCH data, depression-first PAO was indirectly
inferred based on the presence of a registered MDD contact
before first registered BPD contact.

Genotype data merge, quality control and imputation

All PGC cohorts in our analysis ascertained patients with a single
main diagnosis, either MDD or BPD. To perform direct case–case
genetic analyses at the genotype level, the first step is to combine
multiple independent cohorts into unified cohorts including both
MDD and BPD case participants. To do so, great care needs to be
taken to avoid introducing population stratification and technical
artifacts when combining distinct data sources. We developed and
applied an iterative procedure for merging, quality control and
imputation in Ricopili (version 2019_Oct_15.001 for Linux, devel-
oped by Stephan Ripke at the Broad Institute and Massachusetts

General Hospital, Boston, USA; see https://sites.google.com/a/
broadinstitute.org/ricopili/download-installation),26 described in
detail in Supplementary Appendix A. We thereby compiled 13
grouped case–case cohorts including 15 532 BPD cases and 12 920
MDD cases in total.

We created a similar set of 13 grouped cohorts, adding 40 160
control participants from the original merged cohorts, performing
a similar quality control procedure. The resulting 13 pairs of
case–control cohorts contained 14 513 BPD cases versus 22 697
controls and 12 259 MDD cases versus 17 463 controls, after add-
itional outlier and overlap exclusions.

We also leveraged available information about BPD POA (manic
episode first or depressive episode first) to compile seven case–case
cohorts with 2597 depression-first BPD cases and 9217 matching
MDD cases. For the manic episode first cohorts, the sample size
was too small (1300 cases) and the overall observed heritability did
not meet the recommended significance criteria (z = 2.45, P >
0.01),27 so we have not included the BPD manic episode first stratifi-
cation in further analyses.

GWAS

To evaluate genetic differences between BPD and MDD, we per-
formed three primary GWAS analyses and one replication analysis.

Genotype-based case–case GWAS meta-analysis

To identify genetic risk factors differentiating BPD and MDD, we first
compared BPD andMDD cases directly, similar to a previous compari-
son of schizophrenia and BPD.28 Specifically, we performed GWAS on
each of the 13 grouped case–case cohorts based on dosage genotypes,
followed by standard inverse-s.e. weighted meta-analysis across all
grouped cohorts, whereby individuals with BPD were coded as cases
and individualswithMDDwere coded as controls. The first 20 principal
components were used as covariates. We refer to this primary GWAS
analyses as BPDvsMDD GWAS. We repeated this analysis using only
depression-first BPD cases and matched MDD cases (seven case–case
cohorts), and refer to it as BPD-DvsMDD GWAS.

Meta-regression analysis

For the second GWAS analysis, we introduced control individuals
and aimed to identify genetic differences between BPD and MDD
relative to controls. To do so, for each of the 13 cohorts, we first gen-
erated summary statistics for two GWAS: one of BPD versus con-
trols and one of MDD versus controls, where the controls for
each group have been split between BPD and MDD cases propor-
tionally (see previous section). We then used a meta-regression
approach to model the effect size of each single nucleotide poly-
morphism (SNP) as a function of a single fixed covariate: a binary
indicator of phenotype (BPD or MDD, see also Supplementary
Appendix B). This GWAS is referred to as MetaRegr GWAS.

We also performed separate random-effects meta-analyses of
the BPD and MDD GWAS summary statistics, to evaluate which
phenotype appeared to have more heterogeneity in SNP effect
sizes, using the respective meta-regression estimates.

Case–case GWAS

We also performed a third GWAS based on the case–case GWAS
(CC-GWAS) method,29 using BPD versus controls and MDD
versus controls summary statistics. To do so, we compiled a version
of our grouped cohorts based on a set of completely overlapping con-
trols, as CC-GWAS covariance matrix estimation benefits from
control overlap (see Supplementary Appendix C).
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Inverse-weighted meta-analysis

Since our matched case–case–control sample is based on a set of
non-overlapping individuals, it permits a regular inverse-weighted
meta-analysis of BPD versus controls and MDD versus controls
data-sets. Although not aiming to detect differences between BPD
and MDD, this analysis provides a comparison for our case–case-
based analyses, and enables the distinction between loci that
appear to be strictly differential between the two disorders against
those that are also identified as common loci by the meta-analysis.

For all GWAS, we performed positional and expression
quantitative trait loci-based annotation for all SNPs in loci with
P < 1 × 10−4, as well as MAGMA gene-set analysis implemented
in FUMA (version 1.5.2 for Linux, developed by Kyoko Watanabe
at the Department of Complex Trait Genetics, Center for
Neurogenomics and Cognitive Research, VU University
Amsterdam, The Netherlands; see https://fuma.ctglab.nl/) (see
Supplementary Appendix D). To further evaluate whether the
observed signal is shared or driven by either one of the two
phenotypes, we performed colocalization (see Supplementary
Appendix E) for each locus with P < 1 × 10−4.

Multi-trait-based conditional and joint analysis

Based on the most well powered BPD and MDD GWAS summary
statistics data available from Stahl et al20 and Wray et al,21 respect-
ively, we performed a conditional GWAS, conditioning BPD signal
on MDD signal (multi-trait-based conditional and joint analysis
(mtCOJO); see Supplementary Appendix F), to determine
whether this summary statistics-based method would be able to
retrieve most loci identified by our GWAS methods, thus testing
the balance between increased sample size and individual-level
data availability.

Reverse GWAS

In Coleman et al,30 summary statistics were used to identify loci with
differential signals between the two disorders (‘reverse-effect’ analysis).
We evaluated concordance between loci identified through this ana-
lysis and our results, by evaluating the genome-wide significant hits
in the reverse-effect analysis (three in total) in our three GWAS.

Replication analysis with iPSYCH

To replicate our findings from the BPDvsMDD GWAS, we per-
formed a similar case–case association analysis in the iPSYCH
2015 case–cohort study (2524 BPD cases and 23 442 MDD cases).
GWAS was performed using Plink2 (version 2.00a2 for Linux,
Mac and Windows, developed by Christopher Chang at the
California Institute of Technology, Pasadena, USA, with support
from Human Longevity, Inc. in 2016–2017, and input from
Stanford’s Department of Biomedical Data Science; see https://
www.cog-genomics.org/plink/2.0/)31 in two independent samples
(iPSYCH-2012: 1452 BPD cases, 15 920 MDD cases; and additional
iPSYCH-2015i: 1072 BPD cases, 7522 MDD cases) and meta-
analysed.

For our onset analysis, we also utilised a constrained set of 976
individuals who had an MDD diagnosis registered on the same day
or before their BPD diagnosis (depression-first BPD), against the set
of 23 442 individuals with MDD diagnosis.

To evaluate the degree of replication of independent SNPs
(index SNPs of independent linkage disequilibrium blocks) from
our primary GWAS, we performed a sign test, grouping variants
with P-value <1 × 10−5, to determine whether the percentage of var-
iants in the original analysis retaining their direction of effect in the
replication analysis was significantly higher than chance.

Heritability and genetic correlation

For all GWAS, heritability and genetic correlations were estimated
with LD Score Regression (LDSC).32 In addition, we estimated
genetic correlations between our GWAS and well-powered (SNP
heritability z-score >5 and >10 000 cases) psychiatric GWAS
made publicly available by the PGC (https://pgc.unc.edu/for-
researchers/download-results/). The following traits were included:
schizophrenia, attention-deficit hyperactivity disorder (ADHD),
cannabis use disorder, alcohol dependence, alcohol use disorder,
anorexia nervosa, autism spectrum disorder and post-traumatic
stress disorder (PTSD). Since our analysis is currently limited to
European ancestry, we used summary statistics limited to the
European population subset.

Polygenic score analyses

To evaluate whether our GWAS can help distinguish between
patients with MDD and those with BPD on an individual level,
we computed polygenic risk scores (PRS). We calculated leave-
one-out summary statistics based on our set of GWAS, and used
SBayesR (from GCTB software version 2.5.2 for Linux, developed
by Jian Zeng with contributions from Luke Lloyd-Jones, Zhili
Zheng and Shouye Liu at the Institute for Molecular Bioscience,
The University of Queensland, Brisbane, Australia; see https://
cnsgenomics.com/software/gctb/)33 to calculate polygenic scores
for each of the 13 grouped cohorts.We thus created a number of dif-
ferent polygenic predictors, including combinations of those using
multiple regression. We report the area under the curve (AUC)
score as a metric for performance, as well as the percentage of vari-
ance explained, expressed in terms of Nagelkerke’s R2, adjusted for
population covariates (see Supplementary Appendix G).

Specifically, we calculated polygenic scores based on summary
statistics of four different GWAS: (a) BPDvsMDD GWAS, (b) BPD
versus controls GWAS (BPD GWAS), (c) MDD versus controls
GWAS (MDD GWAS) and (d) MetaRegr GWAS. We compared
the ability of each of these scores, based on different GWAS
designs, as well as a combination of (a), (b) and (c) (combined
using multiple regression), to predict the target phenotype –
namely, to classify BPD versus MDD status.

To further quantify the impact of sample size, we compared our
predictors to the BPD GWAS of the Psychiatric Genetics
Consortium.34 As each of our grouped cohorts contains multiple
BPD and MDD studies, it is an involved process to create leave-
one-out summary statistics while removing overlap; we therefore
limited this comparison to one cohort (‘grp5_neth’).

Since we are most interested in distinguishing patients with
BPD with an onset of depression from those with unipolar MDD,
we repeated the above analysis, using depression-first BPD versus
MDD cohorts as target data-sets.

Finally, we tested the reproducibility of our PRS results on the
iPSYCH cohort.

PRS based on other psychiatric traits

Using SBayesR, we also calculated polygenic scores based on public
summary statistics for each of the psychiatric GWAS included in
our genetic correlation analysis.We report mean weighted AUC cal-
culated across our 13 cohorts.

Results

GWAS does not identify significant loci

Results from the three different GWAS methods are reported in
Supplementary Tables 5(a)–(e) and summarised in Fig. 1. In

GWAS of bipolar disorder and MDD
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summary, we observed no genome-wide significant hits for BPD
versus MDD or MetaRegr, but one locus passed the genome-wide
threshold for CC-GWAS. Although our primary GWAS
(BPDvsMDD) did not yield significant loci, we observed significant
heritability (observed h2 = 0.23 (s.e. 0.02), intercept 1.001 (s.e.
0.01)), with similar heritability estimated for the BPD-DvsMDD
GWAS (observed h2 = 0.18 (s.e. 0.04), intercept 1.01 (0.01)). Our
two secondary GWAS (MetaRegr, CC-GWAS) were strongly corre-
lated with BPDvsMDD and with each other (rg 0.91–1; Fig. 1(a)),
but seemed less powered than BPD versus MDD (MetaRegr: h2 =
0.05 (s.e. 0.01) with intercept 0.96 (0.01), CC-GWAS: h2 = 0.17
(s.e. 0.01) with intercept 0.98 (0.01)). Below, we elaborate on the

results of individual GWAS, the suggestive genome-wide significant
loci (loci with index variant reaching P < 1 × 10−6) identified by each
one and those identified by multiple methods.

In the BPDvsMDD GWAS (Supplementary Table 5(a),
Supplementary Figs 2(a) and (b), 3(a) and (b), 4(a) and 5), a total
of eight suggestive loci were identified, four of which are uniquely
identified by this method. Two of these, marked in boldface,
fall within known BPD loci.34 The Manhattan, quantile–quantile
(Q–Q), region and region forest plots for this analysis, as well
as the corresponding Manhattan and Q–Q plots for the BP-
DvsMDD GWAS, can be found in Supplementary Figs 2(a), 2(b),
3(a), 3(b), 4(a) and 5.
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Fig. 1 Miami plot depicting our (a) BPD GWAS and (b) MDD GWAS based on our non-overlapping sample, overlaying loci with P < 1 × 10−6 from
different GWAS, as well as common loci: red – BPDvsMDD GWAS, blue – CC-GWAS, yellow – meta-analysis, green – common locus between
meta-analysis and CC-GWAS (one in total), purple – common loci between case–case GWAS and CC-GWAS (three in total), orange – common loci
between all three methods (one in total). Within each locus, only SNPs in linkage disequilibrium (R2 > 0.1) with the index SNP are coloured, to
accurately display the underlying signal in both the top and bottom panels. The two genome-wide significant loci (for the meta-analysis and
CC-GWAS) are labelled with their index SNP. The BPDvsMDD GWAS (red) column on chromosome 11 consists of two neighbouring but
non-overlapping loci. MetaRegr GWAS was excluded from this figure because of its low power.

BPD GWAS, case–control GWAS of bipolar disorder; MDD GWAS, case–control GWAS of major depression; BPDvsMDD GWAS, case–case GWAS of bipolar disorder versus major
depression; CC-GWAS, case–case GWAS of bipolar disorder versus major depression, based on the CC-GWAS tool; SNP, single nucleotide polymorphism; MetaRegr GWAS,
case–case–control GWAS based on a meta-regression framework. Region plots for all highlighted loci are shown in Supplementary Fig. 6(a)–(f). SNPs within common loci are
coloured accordingly in Supplementary Tables 6 and 7.
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With CC-GWAS (Supplementary Table 5(c), Supplementary
Figs 2(d), 3(d) and 4(c)), we obtain a single genome-wide significant
hit (rs174601 on chromosome 11, P = 6.4 × 10−9, with an odds ratio
of 0.99), for which we also report results from BPDvsMDD GWAS,
BPD GWAS, MDD GWAS and MetaRegr GWAS, as well as meta-
analysis (Supplementary Table 5(e)). For both BPDvsMDD and
MetaRegr GWAS, we observe a similar effect P < 1.0 × 10−5 and a
larger effect size (odds ratio of 0.93 for BPDvsMDD GWAS and
0.89 for MetaRegr GWAS), whereas for BPD GWAS, this SNP is
genome-wide significant with P = 8.0 × 10−10, and maps onto a
known BPD locus, close to the FADS1, FADS2, FADS3 and
TMEM258 genes.34 For MDD, the signal is in the same direction,
although the effect is not significant (P > 0.1). For the meta-analysis,
the same SNP has P = 2.07 × 10−6, likely resulting from a strong BPD
signal (as also indicated by colocalization with a posterior probability
for BPD of >90% for all analyses).

In themeta-regression (Supplementary Table 5(b), Supplementary
Figs 2(c), 3(c) and 4(b)), four loci reached suggestive significance,
none of which overlap with those of the BPDvsMDD GWAS. The
phenotype-specific meta-regression analysis (see Supplementary
Appendix B) further allowed us to compare effect size heterogeneity
between MDD and BPD cohorts. We observed a slightly elevated
effect size heterogeneity in MDD cohorts compared with BPD,
indicating that across all SNPs tested, MDD cohorts are slightly
more heterogeneous; however, the observed difference is minimal
(mean values of 3.0 × 10−2 for MDD v. 2.6 × 10−2 for BPD;
P < 1 × 10−16 paired t-test in all 6.9 million SNPs).

In Fig. 1, notably, BPD (top) has the greatest contribution to
the signal in most loci identified by all different GWAS methods
(displayed in red, blue and yellow), whereas, as expected, the
contribution from MDD (bottom) is more prominent in the
regions identified by the meta-analysis (in green). As an exception
to this pattern, one of the two loci uniquely identified by the
BPDvsMDD GWAS on chromosome 11 (chr11:84.6–85.0 Mb)
reaches P < 1 × 10−4 significance in MDD, but not in BPD (see
also Supplementary Fig. 6). Our BPDvsMDD GWAS and CC-
GWAS identified five suggestive loci in common, whereas two
loci (chr11:36.8–37.3 Mb and chr2:28.3–28.5 Mb) were common
between the meta-analysis and either one of the case–case GWAS.

By performing colocalization analysis of our meta-analyses, we
further explored whether the signal in each locus was shared or spe-
cific to a single trait (summarised in Supplementary Tables 6(a)–(d)
and 7(a)–(d)). Colocalization identified two loci (out of 331 loci
with P < 1 × 10−4 in the meta-analysis) with a high posterior prob-
ability (>75%) (see Supplementary Appendix D) of containing a
shared causal variant, 12 loci as likely BPD-specific and one as
likely MDD-specific. For the two loci likely containing a shared
causal variant, we also report the credible set (posterior probability
>90% for containing the causal variant). Out of the two, one locus in
particular, overlapping the GRIN2A gene, has very high evidence
(posterior probability for both: 93.4%).

Using summary statistics alone, 18 out of the 27 suggestive loci
identified by either the BPDvsMDD GWAS or CC-GWAS were
identified through conditional analysis with mtCOJO (see also
Supplementary Table 8). Notably, neither the top BPDvsMDD
GWAS locus nor the two top CC-GWAS loci were identified by
mtCOJO, suggesting that our approach of genotype-level analyses
is able to disentangle signals not detectable from using summary-
level data alone. In Supplementary Tables 5(a)–(d), mtCOJO
results are available for all loci identified as ‘disorder-specific’.
Our MAGMA-based enrichment analysis, implemented in
FUMA, did not yield any gene-sets that survived Bonferroni correc-
tion. Nominally significant pathways (P < 0.001) are listed in
Supplementary Tables 9(a)–(d).

Finally, in none of the four different GWAS (including the
meta-analysis) did we observe genetic signal (at P < 1 × 10−4) for
the three SNPs reported to differentiate BPD and MDD in the
reverse GWAS of Coleman et al30 (Supplementary Table 9).

Heritability and genetic correlation indicate a strong
correlation with PGC BPD GWAS

We observe a strong genetic correlation between the BPDvsMDD
GWAS summary statistics and the GWAS of PGC BPD: rg = 0.95
with BPD20 (Fig. 2(a) and (b)), primarily BPD type 1 (Fig. 2(b));
note that genetic correlation estimates above 1 between PGC
analyses occur, which may be due to overlapping individuals in
the studies involved. The correlation between BPDvsMDD
GWAS and our BPD GWAS, using only matched individuals, is
also strong: rg = 0.88 (s.e. 0.03). On the other hand, the correlation
estimate with PGC MDD21 is negative (rg =−0.05 (s.e. 0.06)), but
the s.e. overlaps with zero. The negative direction of effect is
expected, given that MDD cases were coded as ‘controls’ in our
case–case analyses (where ‘cases’ correspond to individuals with
BPD).

Genetic correlations with other psychiatric traits tracks are
presented in Fig. 1(b), alongside BPD and MDD (see also
Supplementary Table 11). Mostly, the observed genetic correlations
follow an expected pattern that matches the observations above:
when a trait is strongly correlated with BPD, and less so with
MDD (e.g. schizophrenia), the genetic correlation of BPDvsMDD
falls in between. When a trait is strongly correlated with MDD,
and less so with BPD (e.g. PTSD, ADHD), the genetic correlation
of BPDvsMDD is driven toward zero (or a negative correlation)
because of the relative strength of the MDD signal. An exception
to this ‘rule’ is alcohol use, which is more strongly correlated with
BPDvsMDD (rg = 0.19, s.e. = 0.05) than with PGC BPD (rg = 0.09,
s.e. = 0.04), indicating that genetic risk factors for alcohol use
could represent additional independent risk for conversion from
MDD to BPD.

PRS can distinguish between MDD and BPD, including
depression-first BPD

Figure 3(a) shows the classification score in terms of AUC (see also
Supplementary Fig. 7 for Nagelkerke’s R2) for all 13 grouped
cohorts, for polygenic scores based on BPDvsMDD GWAS, BPD
GWAS, MDD GWAS and a combination of these three predictors.
The mean AUC (over 100 bootstrapped samples per cohort),
weighted by cohort sample size, is 0.62 (2.29% adjusted
Nagelkerke R2), 0.63 (R2 = 4%), 0.59 (R2 = 0.29%) and 0.64 (R2 =
4.56%), respectively. Similar results are shown on Fig. 3(b) for
depression-first BPD, as discussed later. For all cohorts in both
plots, it can be deduced from the s.e. bars that the AUC is signifi-
cantly higher than the bootstrapped model using principal compo-
nents only (null model AUC of 0.58), with the exception of theMDD;
here, the confidence intervals overlap the null model (for AUC) or
zero (for adjusted R2) in seven cohorts. However, using paired t-
tests, weighted by effective sample size, we show that the weighted
mean across all 13 cohorts is significantly higher than that of the cov-
ariates-only ‘null’ model (see Supplementary Table 12).

Interestingly, the BPD predictor outperforms the predictor built
on BPDvsMDD cohorts. However, this is likely because of differ-
ences in sample size of the underlying GWAS: when we compare
the BPDvsMDD predictor to a version of the BPD predictor
based on a GWAS of equal sample size (see Supplementary
Appendix H, Supplementary Fig. 8), the performance difference
initially observed is no longer significant (P = 0.28 for equal
sample size, paired weighted t-test).
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Our comparison of the BPD and BPDvsMDD predictors with
a more recent PGC BPD collection,34 including 41 917 cases and
371 549 controls, was attempted only for cohort ‘grp5_neth’ and
demonstrates the power advantage of the PGC BPD GWAS-based

predictor in classification performance (13.15% R2 for the PGC
BPD predictor, compared with 7.16% for the BPDvsMDD predictor
and 10.98% for our combined BPDvsMDD + BPD +MDD GWAS
predictor; Supplementary Fig. 9). However, combining our
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BPDvsMDD predictor with the PGC BPD predictor yields even
better performance (R2 = 14.81%), thus confirming the value of
utilising a predictor based on case–case GWAS.

Using a paired weighted t-test (one-tailed), we observed signifi-
cantly increased performance of the combined predictor relative
to each of the individual predictors: mean weighted AUC of
0.60 for the BPDvsMDD GWAS, 0.62 for the BPD GWAS, 0.5 for
the MDD GWAS and 0.63 for all three combined (P-value
of 3.5 × 10−5 (BPDvsMDD), 1.9 × 10−3 (BPD) and 6.5 × 10−7

(MDD)).
To delineate the contribution of the signals attributable to each

disorder, we further broke down the combined predictor to two-way
combinations and found that the MDD predictor contributes little
over and above the BPDvsMDD + BPD GWAS combination:
mean AUC 0.62 for BPDvsMDD + BPD GWAS (compared with

0.63 for all three combined, as mentioned above, with P = 0.04)
(see Supplementary Fig.10(a) and (b)).

We next limited our analysis to the subgroup of patients with
depression onset, testing the ability of BPDvsMDD (and BPD and
MDD) PRS to distinguish between depression-first BPD cases and
MDD cases. We found that the classification accuracy is similar
to that including all BPD cohorts (Fig. 3(b) and Supplementary
Fig. 10(c) and (d)). Our available sample size did not permit a
similar analysis for manic-first episode BPD (heritability z-score
of 2.4).

Finally, Fig. 3(c) shows the classification performance of all dif-
ferent psychiatric traits listed above (see the ‘Method’ section), with
respect to differentiating between BPD and MDD cases. Only
schizophrenia is able to provide substantial differentiation
between BPD and MDD, comparable to our BPDvsMDD GWAS
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(AUC = 0.61, s.e. = 0.02), whereas for the rest of the available psy-
chiatric traits, the performance is very poor.

Replication with iPSYCH
Sign tests

We tested 39 independent SNPs (P < 1.0 × 10−5) from BPDvsMDD,
of which 22 (56%) had the same direction of effect in discovery and
replication samples, indicating an accumulation of the same direc-
tion of effect in our replication sample, although this test does not
reach nominal significance. We observe minimal SNP heritability
of BPDvsMDD in the iPSYCH cohort (h2 = 0.02 (s.e. = 0.02), with
intercept 1.003 (0.01)), which may account, in part, for this lack
of replication.

Polygenic risk scoring

Polygenic scores based on our full PGC BPDvsMDD GWAS, calcu-
lated using SBayesR, yielded an AUC of 0.58 and an incremental
Nagelkerke R2 score of 0.40% on iPSYCH, after adjusting for popu-
lation covariates in the regression model. Although it displays
limited power, the PRS predictor is highly significant (P < 1.0 ×
10−16), and an analysis of variance (ANOVA) between the full
PRSmodel against the null model using covariates only is significant
(P = 1.9 × 10−12), confirming the additional classification accuracy
conferred by the PRS predictor.

Using our combined predictor in a multiple regression setting
yields improved results, with an AUC of 0.59 and adjusted
Nagelkerke R2 of 0.84%. After examination of the individual pre-
dictors, we see that the BPD predictor has the strongest contribution
(P = 3.3 × 10−7), whereas the BPDvsMDD and MDD predictors
are not statistically significant in the presence of the BPD predictor
(P > 0.1). As before, the full model using BPD, MDD and
BPDvsMDD outperforms the null model using only covariates
(ANOVA, P < 1.0 × 10−16) (see Table 1) and the model outperforms
the model using the BPDvsMDD predictor only (ANOVA, P =
2.8 × 10−12).

Constrained to individuals with an MDD diagnosis before BPD
diagnosis, our models have similar classification performance, with
an AUC of 0.56 and adjusted Nagelkerke R2 of 0.33% for the
BPDvsMDD, and an AUC of 0.58 and adjusted Nagelkerke R2 of
0.69% for the combined predictor.

Discussion

With the goal of identifying genetic differences between MDD and
BPD, we performed three GWAS: a direct comparison between
cases of both disorders, a meta-regression testing whether effect

sizes differ between BPD versus controls and MDD versus controls
across cohorts, and CC-GWAS using case–control summary statistics.
Our analysis between these two disorders was enabled by our
approach to combine individual-level case-case-control cohorts,
adopted for the first time on a large scale. Specifically, we introduce
a pipeline to carefully match and compile case-case-control cohorts
from existing case-control cohorts. Although this approach limits
the individuals that can be included, it enables direct case–case
GWAS and meta-analysis and obviates the need to account for infla-
tion owing to sample overlap.

We found that MDD and BPD are genetically distinct, with an
estimated heritability of 23% on the observed scale in the direct
comparison GWAS (5% by meta-regression, and 17% by CC-
GWAS), thus potentially distinguishable using genetic predictors.
Our primary GWAS yielded no genome-wide significant loci,
likely because of a lack of power. Although we were able to
include 76% of PGC participants available for these analyses, with
the resulting sample sizes they are still relatively underpowered to
yield genome-wide significant hits for psychiatric traits, given
their polygenicity and sizes of underlying effects, among other
factors.35

Using CC-GWAS, one of our secondary analysis approaches, we
identified one genome-wide significant hit, which has support from
both BPDvsMDD and meta-regression, as well as the BPD GWAS.
The lack of signal in MDD highlights the BPD-specificity of this
locus. In addition, we observe convergence of the different GWAS
methods in a few other loci with suggestive genome-wide signifi-
cance. However, increased sample sizes are needed to enable the dis-
covery of novel loci and the identification of convergent pathways
through pathway enrichment analysis.

Somewhat surprisingly, but in line with the locus-specific signal
described above, we observed that the BPDvsMDD GWAS was
strongly genetically correlated with BPD GWAS (ranging between
0.88 and 0.95). Relatedly, for traits that are strongly correlated
with MDD, but not with BPD (e.g. PTSD, ADHD, anorexia
nervosa), their genetic correlation with BPDvsMDD is driven
toward zero, whereas traits strongly correlated with BPD also correl-
ate with BPDvsMDD.

Our leave-one-out polygenic risk scoring analysis confirms the
ability of our BPDvsMDDGWAS to differentiate between BPD and
MDD status, which is enhanced when adding multiple predictors
from the corresponding case–control GWAS in a multiple regres-
sion setting (combined BPDvsMDD, BPD and MDD predictor).
Although it is possible that this is attributable to the increased effect-
ive sample size, we found that the BPD and MDD predictors (of
similar sample size) contribute differently. Consistent with the
observation that the BPDvsMDD GWAS has a high genetic correl-
ation with BPD, we found that including the MDD predictor (based

Table 1 Replication results of PRS analysis, using iPSYCH as the target cohort

Target cohort

Null model (predicted
by ten principal
components)

Full model (predicted by
BPDvsMDD plus ten

principal components)

Full model combined predictor
(predicted by BPDvsMDD, BPDMDD

and ten principal components)

All patients with a BPD diagnosis versus
all patients with an MDD diagnosis

AUC 0.563 0.578 0.587
Nagelkerke R2 0.99% 1.39% 1.83%
Nagelkerke R2

adjusted
– 0.40% 0.84%

Patients with an MDD diagnosis prior to a
BPD diagnosis versus patients with
an MDD diagnosis and no BPD
diagnosis

AUC 0.547 0.562 0.578
Nagelkerke R2 0.33% 0.65% 1.02%
Nagelkerke R2

adjusted
– 0.32% 0.69%

Nagelkerke R2 adjusted = (Nagelkerke R2 full model)− (Nagelkerke R2 null model). AUC and Nagelkerke’s R2 achieved by eachmodel (i.e. null model – principal components only, full model –
BPDvsMDD GWAS and full model with combined predictor) for BPD versus MDD status classification, and for depression-first BPD versus MDD status. PRS, polygenic risk score; BPD, bipolar
disorder; MDD, major depressive disorder; BPD GWAS, case–control GWAS of bipolar disorder; MDD GWAS, case–control GWAS of major depression; BPDvsMDD GWAS, case–case GWAS of
bipolar disorder versus major depression.
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on theMDD versus controls GWAS) did not have a substantial con-
tribution over and above the BPDvsMDD and BPD predictors.

Our BPDvsMDD and combined predictors had lower perform-
ance than a predictor built on the latest BPD GWAS,34 which is
derived from a much larger sample size, although this comparison
was limited to one combined cohort because of the extensive
sample overlap between the GWAS being compared. In this
cohort, the BPD GWAS does not saturate classification accuracy:
using our BPDvsMDD in conjunction with the well-powered
latest BPD GWAS from the PGC yielded the highest estimated
PRS accuracy. This is expected, since the overall variance explained
by PRS is not yet close to the observed heritability, and underlines
the potential for improvement.

Finally, we tested the ability of PRS to differentiate between
patients with unipolar depression and patients with BPD who are
most difficult to diagnose: patients with BPD with a depressive
onset. Given that depression-first BPD cases have stronger depressive
features than those with a manic POA,17,36 one may hypothesise that
the ability of PRS to distinguish between depression-first BPD cases
and MDD cases is lower than that including all BPD cases. To the
contrary, we observe that the classification accuracy of PRS is statis-
tically indistinguishable to that including all patients with BPD, in all
cohorts. This finding is encouraging, as it opens the possibility of
future genetic studies being able to aid in precision psychiatry
efforts, including the differential diagnosis of mood disorders.

Although our analysis demonstrates the potential of genetic pre-
dictors to distinguish BPD from MDD, including patients with a
depressive onset, we stress the fact that the reported predictive
ability is still very low – larger sample sizes are essential in
making such predictors useful in clinical practice. However, we add-
itionally show here that the combination of predictors from differ-
ent GWAS can help in this area.

Our replication effort in iPSYCH did not show strong replica-
tion. This may be because of a lack of power, but also may be
affected by the differences in ascertainment strategies. Patients in
the iPSYCH samples are ascertained in secondary care hospitals,
where only around 15% of MDD cases in Denmark are treated,37

which may mean the PGC MDD cases, comprising our discovery
sample, may be less representative of them. This is consistent with
previous work,38 showing that the genetic correlation between
iPSYCH PGC for MDD is lower than for BPD and that the
MDD–BPD cross-disorder genetic correlation is higher in
iPSYCH than in prior PGC studies, potentially limiting the power
to identify discriminating genetic signals. In the PGC data available
to us, 83% of BPD case participants have BPD type 1, indicating a
selection for severity, whereas this number is not known in
iPSYCH. Despite these differences, PRS effects were replicated in
iPSYCH, an independent sample.

Taken together, our results support the hypothesis that controls,
patients with MDD and patients with BPD primarily lie on a con-
tinuum of genetic risk, with little specific MDD versus BPD signal
detectable at the current sample sizes. Our analysis yields substantial
heritability estimates; however, since disease prevalence and herit-
ability differ between BPD and MDD (BPD has higher heritability
and lower prevalence compared with MDD), relatively larger
sample sizes are needed to detect MDD-specific signals.39

A limitation of our study is the cross-sectional nature of our
phenotypic data; in particular, we expect a proportion of
MDD patients to have converted to BPD since recruitment.
Unfortunately, insufficient phenotypic information on age and
time-since-onset was available to perform an analysis including
only likely stable MDD cases in a well-powered way.

In addition to larger sample sizes, future studies with richer lon-
gitudinal phenotypic information and multi-diagnostic cohorts, as
well as more direct case–case analyses, will likely yield a better

understanding of our findings and enable the development of
better genetic predictors distinguishing BPD from MDD, and
more specifically, depression-first BPD from MDD, that may in
the future be utilisable in a clinical setting.

To this end, the collection of the 13 case-case-control cohorts
compiled here will be a valuable resource for the research commu-
nity in psychiatric genomics. Information on accessing these data
from studies shared with the PGC will be available on the PGC
website. Summary statistics data from case–case GWAS analysis
will also become available upon publication.
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