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ARTICLE OPEN

Metabolic activity of CYP2C19 and CYP2D6 on antidepressant
response from 13 clinical studies using genotype imputation: a
meta-analysis
Danyang Li 1,2, Oliver Pain 3, Chiara Fabbri 1,4, Win Lee Edwin Wong 1,5, Chris Wai Hang Lo1, Stephan Ripke 6,7,
Annamaria Cattaneo 8,9, Daniel Souery10, Mojca Z. Dernovsek 11, Neven Henigsberg 12, Joanna Hauser 13, Glyn Lewis 14,
Ole Mors15, Nader Perroud16, Marcella Rietschel 17, Rudolf Uher 18, Wolfgang Maier19, Bernhard T. Baune20,21,22,
Joanna M. Biernacka 23,24, Guido Bondolfi16, Katharina Domschke 25, Masaki Kato26, Yu-Li Liu 27, Alessandro Serretti28, Shih-
Jen Tsai 29,30, Richard Weinshilboum 31, the GSRD Consortium, the Major Depressive Disorder Working Group of the Psychiatric
Genomics Consortium, Andrew M. McIntosh 32 and Cathryn M. Lewis 1,33✉
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Cytochrome P450 enzymes including CYP2C19 and CYP2D6 are important for antidepressant metabolism and polymorphisms of
these genes have been determined to predict metabolite levels. Nonetheless, more evidence is needed to understand the impact
of genetic variations on antidepressant response. In this study, individual clinical and genetic data from 13 studies of European and
East Asian ancestry populations were collected. The antidepressant response was clinically assessed as remission and percentage
improvement. Imputed genotype was used to translate genetic polymorphisms to metabolic phenotypes (poor, intermediate,
normal, and rapid+ultrarapid) of CYP2C19 and CYP2D6. CYP2D6 structural variants cannot be imputed from genotype data, limiting
the determination of metabolic phenotypes, and precluding testing for association with response. The association of CYP2C19
metabolic phenotypes with treatment response was examined using normal metabolizers as the reference. Among 5843
depression patients, a higher remission rate was found in CYP2C19 poor metabolizers compared to normal metabolizers at nominal
significance but did not survive after multiple testing correction (OR= 1.46, 95% CI [1.03, 2.06], p= 0.033, heterogeneity I2= 0%,
subgroup difference p= 0.72). No metabolic phenotype was associated with percentage improvement from baseline. After
stratifying by antidepressants primarily metabolized by CYP2C19, no association was found between metabolic phenotypes and
antidepressant response. Metabolic phenotypes showed differences in frequency, but not effect, between European- and East
Asian-ancestry studies. In conclusion, metabolic phenotypes imputed from genetic variants using genotype were not associated
with antidepressant response. CYP2C19 poor metabolizers could potentially contribute to antidepressant efficacy with more
evidence needed. Sequencing and targeted pharmacogenetic testing, alongside information on side effects, antidepressant
dosage, depression measures, and diverse ancestry studies, would more fully capture the influence of metabolic phenotypes.
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INTRODUCTION
Antidepressants are the first-line treatment for moderate or severe
depression, however efficacy varies, and side effects are common
[1]. Approximately 35% of patients reach remission after treatment
with a single antidepressant but a substantial proportion require
further treatment, with many developing treatment-resistant
depression [2–5]. Even within the same antidepressant class,
treatment responses vary substantially. For example, selective
serotonin reuptake inhibitors (SSRIs), the most widely prescribed
antidepressants, could lead to remission in 30–45% of patients [6].
Differences in response rate may be due to many factors including
drug-drug interactions [7], depression subtypes [8, 9], comorbidity
[10], smoking [11], and genetic variation, particularly in drug
metabolism genes.
Pharmacogenetics utilizes genetic variation that plays a role in

medication action and metabolism to facilitate individualized
prescription, thus improving the treatment efficacy, and reducing
undesirable effects [12]. In antidepressants, current evidence and
prescribing guidelines support cytochrome P450 (CYP) genes for
pharmacogenetic testing, in which CYP2C19 and CYP2D6 have been
widely examined for drug efficacy and side effects [12–15]. Both
CYP2C19 and CYP2D6 are highly polymorphic, with genetic
haplotypes defined by the star allele nomenclature [16]. These star
alleles can be classified into different metabolic phenotypes, such
as poor metabolizers (PMs), intermediate metabolizers (IMs),
normal metabolizers (NMs), rapid and ultrarapid metabolizers
(RMs/UMs) according to Clinical Pharmacogenetics Implementation
Consortium (CPIC) guidelines [14, 15]. Compared to NMs, PMs and
IMs have an increased risk of adverse effects because of a lower
metabolism rate and elevated drug serum concentrations, which
may also increase treatment efficacy. RMs and UMs, on the other
hand, facilitate the metabolic process to reduce drug exposure and
may lead to treatment failure through a lack of efficacy.
Clinical studies have shown that genetic variation in these

metabolizing enzymes is clearly associated with metabolite levels,
but the link between genetic variation and treatment response or
side effects is more complicated. For example, in the GENDEP
study, CYP2C19 and CYP2D6 genotypes were associated with
serum concentration of escitalopram and nortriptyline, but did not
predict treatment response [17]. A meta-analysis of 94 studies
assessed the relationship between psychiatric drug exposure
(dose-normalized plasma level) and metabolising status of
CYP2C19 and CYP2D6, observing exposure differences in escita-
lopram and sertraline [18]. However, treatment effectiveness of
these antidepressants was not associated with CYP2C19 genotypes
in a large retrospective study based on participant self-report [19].
Guidelines have been developed for antidepressant use based

on CYP2D6 and CYP2C19 metabolizing status. For instance, CPIC
guidelines for CYP2C19 suggest a 50% dose reduction of
citalopram, escitalopram and sertraline for PMs, and alternative
antidepressants that are not predominantly metabolized by
CYP2C19 are advised for UMs [15]. However, evidence is still
accruing to confirm the role of pharmacogenetic testing to guide
antidepressant prescribing [12].
Both CYP2C19 and CYP2D6 require in-depth assessment of

variation to fully determine star alleles and metabolizer status but
it is complicated by structural variants and pseudogenes,
particularly for CYP2D6. Full assessment cannot be achieved
through genotyping but requires pharmacogenetic-specific tests
(e.g., targeted arrays, sequencing) [20–22]. However, many
research studies have genome-wide genotyping and lack full
pharmacogenetic assessment. In this study, we combined clinical
and genetic data from 13 clinical studies, with 5843 participants,
of European and East Asian ancestry. Imputation from genome-
wide genotyping was used to estimate the metabolic status of
CYP2C19 and CYP2D6. Association of CYP2C19 metabolic pheno-
types with clinically evaluated treatment response was performed
to investigate whether genotype-determined PMs, IMs, and RMs/

UMs showed differential antidepressant efficacy, compared to
NMs. This unique resource provides additional evidence of the
relationship between CYP gene metabolic phenotypes and
treatment response, and may further determine whether
genotype-determined metabolizer status could add useful infor-
mation for individualized prescribing of antidepressants.

METHODS
Samples
The clinical studies analyzed have been described in detail previously [3].
In brief, 10 studies with European ancestry and 3 studies from East Asia
were included. All participants had a diagnosis of major depressive
disorder (MDD) and received at least one antidepressant, with treatment
response collected at baseline, and for 4–12 weeks post-baseline. Informed
consent was obtained from all participants. We assessed two antidepres-
sant response outcomes of remission and percentage improvement.
Remission was a binary outcome defined as a reduction of the depression
symptoms to a prespecified criteria of the rating scale. Percentage
improvement was a continuous measure calculated from the proportional
decrease (or increase) of depression symptom score from baseline. The
percentage improvement was standardized (mean 0, standard deviation 1)
within study to allow comparability of different scales across the studies
(e.g., HAMD (Hamilton Depression Rating Scale), MADRS (Montgomery
Åsberg Depression Rating Scale), QIDSC (Quick Inventory of Depressive
Symptomatology)). Demographic and clinical variables of age, sex, MDD
baseline severity and antidepressant prescription information were
available in each study (Supplementary Table 1).
Detailed procedures of genotyping have been reported elsewhere

[23–31]. Quality control and imputation were processed using the standard
‘RICOPILI’ pipeline from the Psychiatric Genomics Consortium (PGC) with
1000 Genomes Project multi-ancestry reference panel [32]. Each step was
performed separately in European and East Asian ancestry studies
following standard PGC protocols. Study details can be found in
Supplementary Table 1 and the previous study [3].

Star alleles and metabolic phenotypes
Using best guess imputed genotype calls, phasing was conducted
separately on the genetic regions of CYP2C19 and CYP2D6 obtained from
PharmGKB (https://www.pharmgkb.org/). The haplotype was determined in
each sample using SHAPEIT4 software and the 1000 Genomes Project multi-
ancestry reference panel [33]. To fully utilize phased SNPs and translate
them to star alleles, we first extracted all SNPs used to define CYP2C19 and
CYP2D6 star alleles from the CPIC definition tables (https://cpicpgx.org/;
downloaded June 2022). These SNPs were then matched to the phased
data, and matching SNPs were assigned to star alleles following the CPIC
guidelines. If a star allele was defined by more than one SNP, it was counted
only when all the defined SNPs were observed. Each star allele was
annotated as having no, decreased, normal, or increased function with
corresponding activity value based on CPIC definition tables and the
previous literature (Supplementary Table 2) [34]. The reference allele (*1)
was assigned to haplotypes that had no annotated functional star alleles or
had uncertain or unknown functional alleles of CYP2D6. Because structural
variants cannot be determined from genotype data, CYP2D6 rapid and
ultrarapid metabolizers were not included. Next, we calculated the activity
score for each individual by adding the activity values of the two star alleles.
Metabolic phenotypes (PM, IM, NM) of CYPC19 were classified based on
CPIC and CYP2C19 rapid+ultrarapid metabolizers were defined as
individuals carrying at least one increased functional allele (*17) [15].
CYP2D6 phenotypes (PM, IM, NM) were determined following consensus
recommendations from the CPIC and the Dutch Pharmacogenetics Working
Group (DPWG) [35]. To validate the defined metabolic phenotypes, we
compared phenotype concordance with that previously derived in the
GENDEP using Roche AmpliChip CYP450 microarray and TaqMan SNP
genotyping [17]. After harmonizing the metabolizer status, the concor-
dance rate (percentage of individuals assigned the same metabolic
phenotypes) was 96.4% for CYP2C19 and 79.9% for CYP2D6 (Supplemen-
tary Table 3). The proportion of misclassification in CYP2C19 and CYP2D6
metabolic phenotypes can be found in Supplementary Table 3.

Statistical analyses
Associations. Given the suboptimal performance of genotype-based
metabolic phenotype imputation in CYP2D6, we exclusively focused on
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CYP2C19 in the association and meta-analyses to ensure the validity of the
results. We used the NMs in CYP2C19 as the reference group to examine
the effect of other metabolizer groups on antidepressant response. For
remission, logistic regression was used to evaluate the association with
CYP2C19 metabolic phenotypes in each study, including age, sex, and
MDD baseline severity as covariates. For percentage improvement, linear
regression with CYP2C19 metabolic phenotypes, adjusting for age and sex,
was used to test for association with metabolic phenotypes. The
correlation between MDD baseline score and percentage improvement
was very low (Pearson correlation = 0.042), so we did not add MDD
baseline severity as a covariate. We next stratified into ‘antidepressant
groups’, with drugs that were primarily metabolized by CYP2C19, based on
the clinical annotation of Level 1 A in PharmGKB [13, 36](Supplementary
Table 4). Stratifying participants by CYP2C19-metabolized antidepressants,
we repeated the analyses of remission and percentage improvement in
10 studies with CYP2C19-metabolized antidepressants (3390 participants)
(Supplementary Figure 1).

Meta-analyses. In each study, odds ratios (ORs) of remission, and
Standard Mean Differences (SMDs, Cohen’s D) of percentage improvement,
with standard errors of both effect sizes, for each metabolizer group were
extracted. We applied random effect meta-analysis since the true effects
were assumed to be heterogeneous due to the difference in factors such
as study populations, antidepressants prescribed, and outcome measure-
ments. The effect sizes in each study were pooled, and inverse-variance
weighted. The between-study heterogeneity was quantified by I2 statistic
and heterogeneity variance τ2 using the Paule-Mandel method for ORs and
restricted maximum-likelihood estimator for SMDs. The significance was
tested by Cochran’s Q at p < 0.05. Additionally, subgroup meta-analyses
were applied to test the hypothesis that effects differed between European
and East Asian ancestry. We assumed both ancestries shared a common
between-study heterogeneity (τ2) due to a small number of studies from
East Asia. Cochran’s Q was used to determine whether the differences
between subgroups could be explained by true effect differences or by
sampling errors alone. We performed meta-analyses in all samples for
CYP2C19 metabolic phenotypes and then stratified the analyses by
antidepressant groups for the corresponding metabolizer effects. We used
p-value < 0.05 as nominal significance, and corrected for multiple testing
for the 3 independent tests of metabolic phenotypes compared with NMs
(3 phenotypes in CYP2C19), giving a Bonferroni corrected p-value of 0.017
(0.05/3). No correction across outcomes (remission and percentage
improvement) was applied, due to their high correlations. All meta-
analyses were performed by ‘meta’ package in R 4.2.1.
The power of the meta-analysis was calculated by ‘dmetar’ package in R

4.2.1. Using the sample size of PMs (N= 179) and NMs (N= 2289) in
CYP2C19, the meta-analysis had over 80% power to detect SMD of 0.074
and OR 1.15 with no effect heterogeneity, or SMD 0.085 and OR 1.17 with
low heterogeneity, at a significance level p= 0.01.

Sensitivity tests
Four sensitivity analyses were performed. Firstly, each participant’s activity
score was calculated as a continuous measure to assess metabolic activity
and compared to the metabolizer groups. We tested CYP2C19 metabolic
effects represented by activity scores using the same analyses described
above. For the percentage improvement outcome, correlations were
assessed between activity scores and residuals of percentage improve-
ment after regressing out age and sex, and restricted maximum-likelihood
estimator was used to estimate between-study heterogeneity of correla-
tions in the meta-analyses. Secondly, the impact of baseline depression
severity on percentage improvement was assessed by including it as a
covariate in the linear regression analyses. Thirdly, to test how small
studies might be impacting results, we reran the meta-analysis of CYP2C19
PM on the remission outcome including only studies with at least 10 PMs
present. Finally, the association of CYP2C19 metabolic phenotype with
citalopram and escitalopram were measured to compare the effect with all
samples and CYP2C19 antidepressant group.

RESULTS
Characteristics of star alleles and metabolic phenotypes
Seven star alleles in CYP2C19 and 16 alleles in CYP2D6 were
identified from the imputed genotype data and were classified as
having no, decreased, normal and increased function (Supple-
mentary Table 2). In general, alleles had similar frequencies in
studies of the same ancestry group (Supplementary Figure 2). The
reference alleles (*1) were the most common, with mean
frequency 62.8% in CYP2C19, and 39.2% in CYP2D6 in European
ancestry studies, and frequencies of 62.1% and 34.2% in East Asian
studies. Other high frequency alleles in European-ancestry studies
were *17 (22.0%) in CYP2C19 and *4 (19.8%) in CYP2D6, while
CYP2C19 *2 (30.5%) and CYP2D6 *10 (48.6%) had high frequencies
in East Asian studies. Structural variants including *5 in CYP2D6
cannot be imputed from genotype, making assessment of CYP2D6
star alleles and metabolizer status incomplete. A total of 5843
individuals with remission or percentage improvement outcome
in 13 studies were analyzed. Four metabolizer groups (PMs, IMs,
NMs, RMs+UMs) for CYP2C19 and three metabolizer groups (PMs,
IMs, and NMs) for CYP2D6 were translated from star alleles. In both
genes, the most common metabolizer group was NMs, and the
rarest was PMs (Table 1). Compared with the East Asians, the
European-ancestry studies had a lower proportion of CYP2C19
PMs and IMs, and higher proportion of RMs+UMs. CYP2D6 PMs
were only found in the European-ancestry studies (Fig. 1,
differences between ancestries, Wilcoxon test: CYP2C19 PMs

Table 1. Sample characteristics.

CYP2C19 CYP2D6 (incomplete assessment*)

PM (N= 179) IM (N= 1601) NM (N= 2289) RM+UM
(N= 1774)

PM (N= 249) IM (N= 2087) NM (N= 3507)

Remission 89 (49.7%) 607 (37.9%) 885 (38.7%) 662 (37.3%) 96 (38.6%) 796 (38.1%) 1351 (38.5%)

Percentage
Improvement

0.12 (1.10) 0.00 (0.98) −0.01 (1.01) 0.00 (0.99) −0.02 (0.98) 0.01 (0.98) 0.00 (1.00)

Age 45.15 (14.53) 44.76 (14.64) 44.44 (14.19) 44.95 (14.17) 43.41 (14.62) 44.51 (14.29) 44.91 (14.31)

Sex (female) 112 (62.6%) 987 (61.6%) 1438 (62.8%) 1112 (62.7%) 154 (61.8%) 1301 (62.3%) 2194 (62.6%)

Ancestry
(European)

110 (61.5%) 1360 (84.9%) 2078 (90.8%) 1768 (99.7%) 249 (100%) 1902 (91.1%) 3165 (90.2%)

CYP2D6 (incomplete assessment*)

PM 7 (3.9%) 55 (3.4%) 96 (4.2%) 91 (5.1%) - - -

IM 58 (32.4%) 598 (37.4%) 785 (34.3%) 646 (36.4%) - - -

NM 114 (63.7%) 948 (59.2%) 1408 (61.5%) 1037 (58.5%) - - -

Mean with standard deviation for continuous variables and frequency with proportion for categorical variables were displayed.
PM Poor metabolizer, IM Intermediate metabolizer, NM Normal metabolizer, RM+ UM Rapid+ultrarapid metabolizer.
*Due to undetected variants in genotype, imputation of CYP2D6 metabolic phenotypes was less accurate.
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p= 0.007, CYP2C19 IMs p= 0.007, CYP2C19 RMs+UMs p= 0.007,
CYP2D6 PMs p= 0.014). For the 12 antidepressants metabolized
primarily by either CYP2C19 or CYP2D6, the same distribution of
metabolic phenotypes was found in both antidepressant groups
(Supplementary Table 5).

Meta-analyses of CYP2C19 metabolic phenotypes in all
samples
Given the incomplete representativeness of CYP2D6 metabolic
status using genotype, we focused on CYP2C19 metabolic
phenotypes in the association test. The association of metabolizer
status with antidepressant response was first assessed in all
samples, across all antidepressants. The remission rate and mean
percentage improvement in each metabolizer group are pre-
sented in Table 1. Overall, PMs in CYP2C19 showed a higher
remission rate with nominal significance (OR= 1.46, 95% CI [1.03,
2.06], p= 0.033, Fig. 2a) but did not meet correction for multiple
testing. The percentage improvement analysis showed a non-
significant higher efficacy in PMs (SMD= 0.13, 95% CI [−0.03,
0.29], p= 0.101). Other metabolic phenotypes in CYP2C19 had no
difference from NMs in both outcomes (Fig. 2a). Subgroup meta-
analyses found no heterogeneity in the effect of CYP2C19 PMs in
all cohorts or between ancestry groups (all cohorts: I2= 0%, τ2= 0,
p= 0.81; between groups: χ2= 0.13, p= 0.72). In other metabolic
phenotypes, no significant heterogeneity was detected (Supple-
mentary Figure 3).

Meta-analyses of CYP2C19 metabolic phenotypes stratified by
antidepressant groups
Next, to determine if the metabolic activity was associated with
response in antidepressants that were primarily metabolized by
CYP2C19 [13], meta-analyses were stratified with 7 CYP2C19-

metabolized antidepressants (Supplementary Table 4). CYP2C19
PMs showed a similar trend to the results in all samples, with a
higher remission rate and percentage improvement compared to
NMs (remission: OR= 1.47, 95% CI [0.90, 2.39], p= 0.121;
percentage improvement: SMD= 0.12, 95% CI [–0.10, 0.34],
p= 0.282, Fig. 2b, c) but the association was not significant. Other
metabolizer groups were not associated with response. Detailed
results for each study can be found in Supplementary Figure 4. As
a comparison, metabolic effect was tested in the antidepressant
groups that were not primarily metabolized by CYP2C19. Detailed
results are shown in Supplementary Figure 5.

Sensitivity test
Finally, four sensitivity tests were performed. First, the meta-
analyses were repeated using the activity score as a quantitative
measurement of metabolic activity to compare the results with
the primary analyses. The activity scores differed between
European and East Asian studies, with Europeans having higher
scores for both CYP2C19 and CYP2D6 (Wilcoxon test: CYP2C19
p= 0.007; CYP2D6 p= 0.028, Supplementary Figure 6). However,
activity score of CYP2C19 was not associated with the outcomes of
remission or percentage improvement (Supplementary Table 6). In
the second sensitivity test, baseline severity of depression was
added as an additional covariate in the analyses of percentage
improvement. As in the primary analyses, PMs in CYP2C19 had
higher, but non-significant SMD of percentage improvement
(SMD= 0.13, 95% CI [−0.03, 0.29], p= 0.103). No clear pattern was
found in tests of other metabolizers (Supplementary Table 7).
Furthermore, we meta-analyzed the CYP2C19 PMs for remission
by including only studies with more than 10 CYP2C19 PMs. A
higher rate of remission was observed in CYP2C19 PMs from 8
studies confirming the association found in the main analyses
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Fig. 1 Proportion of metabolic phenotypes in each cohort. DAST Depression and Sequence of Treatment, GENDEP Genome Based
Therapeutic Drugs for Depression, GENPOD GENetic and clinical Predictors Of treatment response in Depression, GODS Geneva Outpatient
Depression Study, GSK: Glaxo Smith Kline, GSRD Group for the Study of Resistant Depression, PFZ Pfizer, PGRN Pharmacogenomics Research
Network Antidepressant Medication Pharmacogenomic Study, STARD Sequenced Treatment Alternatives to Relieve Depression. PM poor
metabolizer, IM intermediate metabolizer, NM normal metabolizer, RM+ UM rapid+ultrarapid metabolizer. *Due to undetected variants in
genotype, imputation of CYP2D6 metabolic phenotypes was less accurate.
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(OR= 1.56, 95% CI [1.09; 2.24], p= 0.016). Lastly, we tested the
effect of CYP2C19 on citalopram and escitalopram antidepres-
sants. No significant findings were detected, with the strongest
effects found in CYP2C19 PMs, showing a non-significant increase
in the remission rate and percentage improvement compared to
NMs (remission: OR= 1.41, 95% CI [0.84, 2.34], p= 0.192,
percentage improvement: SMD= 0.069, 95% CI [−0.16, 0.30],
p= 0.559, Supplementary Table 8).

DISCUSSION
In this study, we leveraged 13 clinical studies (10 of European-
ancestry and 3 from East Asia) to identify the metabolic status of
CYP2C19 and CYP2D6 through genome-wide genotyping. A meta-
analysis was performed for the association between CYP2C19
metabolic phenotypes and antidepressant response, using remis-
sion and percentage improvement as outcome measures. Using
the available imputed genotype data, we identified 7 star alleles of
CYP2C19 and 16 star alleles of CYP2D6. We found CYP2C19 PMs
had a higher remission rate compared to CYP2C19 NMs in all
samples (OR= 1.46; 95% CI [1.03, 2.06]), which reached nominal
significance but was not significant at the multiple testing
threshold. CYP2C19 PMs also had a higher remission rate in
antidepressants primarily metabolized by CYP2C19 (OR= 1.47,
95% CI [0.90, 2.39]) but differences were not significant. No
difference in percentage improvement was seen between PMs
and NMs. Other metabolizer groups in CYP2C19 showed no
association with either remission or percentage improvement.
Although there were differences in the frequency of star alleles
and in the proportions of metabolic phenotypes between
European and East Asian ancestry studies, the impact of metabolic
phenotypes was similar.
In CYP2C19, our analysis pipeline detected 7 star alleles

including all tier 1 alleles (*2, *3 and *17) and two tier 2 alleles
(*8, *35) demonstrating a good coverage of imputed genotype for
CYP2C19 region [37]. Nevertheless, only a moderate relationship
was detected with CYP2C19 PMs with the remission outcome.
Other metabolizer statuses were not associated with treatment
outcomes. When testing the PMs restricted to antidepressants
largely metabolized by CYP2C19, a similar effect size was detected
but showed no significance, suggesting a loss of power. Other

meta-analyses, retrospective studies, and clinical cohorts have
replicated a higher antidepressant efficacy of CYP2C19 PMs
[19, 38–40]. However, a null effect or an opposite association of
CYP2C19 slow metabolizers for lower antidepressant efficacy was
observed in smaller samples [17, 41, 42]. This discrepancy may be
due to different criteria for study participants, MDD severity,
dropout rates, medication prescribed, and lack of information on
other associated factors such as antidepressant dosage. Given the
heterogeneity of patients and potential confounding variables,
our results need further replication to understand the role of
CYP2C19 metabolizers. In addition to treatment efficacy, PMs of
CYP2C19 were also associated with worse antidepressant toler-
ability, although these features were not assessed in our study
[19, 39]. CPIC and the Dutch Pharmacogenetics Working Group
(DPWG) have recommended reducing the starting dose of
escitalopram, citalopram, and sertraline for CYP2C19 PMs because
of the increased probability of adverse effects [15, 43]. Appropriate
support could be provided to patients at the beginning of the
treatment to reduce the dropout rate and maximize the drug
effect.
In CYP2D6, genotype data had lower ability to identify star

alleles. Our study detected 16 star alleles of CYP2D6, which were
classified as having no, decreased, or normal function. No
structural variants could be detected, so increased function alleles
(*xN) were not called, and fewer PMs/IMs were reported (such as
undetected deletion *5). Approximately 7% of CYP2D6 variants are
structural variants, so the star allele calls, diplotype assignment
and metabolic phenotype can be affected by missing structural
variants [22, 44]. The low concordance rate of CYP2D6 metabolic
phenotype with previous assessment in the GENDEP study [17]
(79.9%) indicates a limited allele coverage in the genotype,
leading to a higher proportion of NMs and misclassification of
other metabolic phenotypes (Supplementary Table 3).
Activity score was also applied for the assignment of metabolic

phenotype. Using clinical guidelines, each allele from CYP2C19 and
CYP2D6 is assigned an activity value and the value is summed
across the two alleles carried to give an activity score representing
the individual’s metabolic activity [34, 35, 40]. We found no effect
of CYP2C19 activity score on the outcomes of remission and
percentage improvement but not the limitations of performing
this across all drugs. These antidepressant results contrast to

a. All samples

b. CYP2C19 antidepressant group
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Fig. 2 Association of CYP2C19 metabolizer status with antidepressant outcomes. a Association of CYP2C19 metabolic phenotypes in all
samples. b Association of CYP2C19 metabolic phenotypes stratified by CYP2C19-metabolized antidepressants. PM poor metabolizer, IM
intermediate metabolizer, RM+UM rapid+ultrarapid metabolizer, OR odd ratio, SMD standard mean difference, CI confidence interval.
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antipsychotic response, where higher CYP2C19 activity score was
associated with lower symptom severity [34]. The previous
association of CYP2C19 PMs with remission outcome was not
detected in the activity score analysis. This is likely because PMs
have a low frequency and represent only the lower tail of the
activity score distribution, so the effect is diluted when combining
phenotype groups.
Our analyses included both European and East Asian ancestry

populations. The frequencies of star alleles were clustered by
ancestry. For example, European population had lower frequen-
cies of *2, *3 in CYP2C19 and *10 in CYP2D6, but higher
frequencies of CYP2C19 *17 and CYP2D6 *4, than the East Asian
population, leading to fewer PMs and IMs for CYP2C19 but higher
proportions of CYP2C19 RMs+UMs and CYP2D6 PMs. These
ancestry differences align with the CPIC guideline and other
reports [15, 45]. When connecting the cytochrome enzyme status
with antidepressant response, few studies have been performed in
the East Asian population. A clinical trial of 100 depression
patients from Taipei found CYP2C19 poor metabolizers had higher
serum levels of antidepressants [46]. In some antipsychotics
metabolized by specific cytochrome enzymes, the plasma
concentrations of drugs are higher in East Asian populations than
in European populations [47]. In contrast, modelling has
suggested that the metabolic contributions of CYP2C19 on
escitalopram would be similar across European and Asian
populations [48]. As there is little evidence of differentiation by
ancestry, current clinical guidelines provide the same antidepres-
sant dosing recommendations across populations [15]. Our
subgroup meta-analyses between the European and East Asian
studies found no difference in metabolic effect for each
phenotype of CYP2C19 but the low sample size in East Asian
studies (9% of all samples) implies much reduced power
compared to the European studies.
Some study limitations should be considered. In addition to the

incomplete assessment of star alleles from genotype data
considered above, larger sample sizes are needed specifically in
different ancestries and drug groups to evaluate drug-specific
metabolic effect. Too few CYP2C19 PMs (2.1% in European, 3.1% in
all participants) were present to show a statistically significant
association after correcting for multiple testing. Similarly, CYP2C19
RMs+UMs (1.1%) were rare in the East Asian population.
Citalopram and escitalopram were the most prescribed drugs,
accounting for 54% of all samples and 93% of the CYP2C19
antidepressant group, so the metabolic effect on treatment
response was mainly determined by these two drugs. In addition,
no data from clinical evaluations or the environment (e.g., dosage,
concomitant drugs, smoking, diet) were analyzed, and these
factors could influence symptom improvement and cytochrome
metabolic activity. Although no significant heterogeneity was
detected in the meta-analyses, we should acknowledge the
differences among cohorts in study design, patient selection,
and response measures. No significant differences between IMs/
RMs+UMs and NMs could be detected, and higher power is
probably needed to effectively test between metabolizer groups.
Side effects were also not available in our data, which are
associated with metabolic phenotypes. We analyzed only the final
depression score, at the end of the study treatment, to determine
remission and calculate the percentage improvement. Other
studies have suggested using longitudinal measures throughout
treatment period as repeated measures in a mixed linear model to
improve the statistical power [41]. While our study concentrates
on CYP2C19 and CYP2D6, there is potential for extending
pharmacogenetic testing to other pharmacokinetic (CYP2B6) and
pharmacodynamic genes (SLC6A4, HTR2A) to understand their
impact on antidepressant efficacy and tolerability [15]. Finally, the
imputed genotype showed a promising utility in detecting
CYP2C19 star alleles, but in CYP2D6, no RMs/UMs and fewer
PMs/IMs were identified due to undetected rare and structural

variants. Deeper imputation panels that detect structure variants,
or further genetic studies using sequencing or modern targeted
array would be necessary for a full assessment of CYP2D6
metabolizer status [49].
In conclusion, using imputed genotype data, our meta-analysis

showed no significant association between CYP2C19 metabolic
phenotypes with antidepressant response. Moderate evidence of
an association with CYP2C19 poor metabolizers was indicated,
which had higher rates of antidepressant remission. Metabolic
phenotypes of CYP2C19 differed in frequency between European
and East Asian populations but did not differ in their effect on
treatment outcomes. Research studies with genotype are limited
in their assessment of pharmacogenetic variation especially for
CYP2D6. Fuller assessment of metabolizer status together with
information on clinical factors and broader ancestry diversity
could reduce the heterogeneity and improve power to evaluate
the effect of metabolic phenotypes on antidepressant response.
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