Tactical behaviors in men's and women's middle-distance global championship track finals

Item Type	Article (Accepted Version)
UoW Affiliated Authors	Renfree, Andrew
Full Citation	Comino, P., Foster, C., Renfree, Andrew ORCID logo and Casado, A. (2025) Tactical behaviors in men's and women's middle-distance global championship track finals. International Journal of Sports Physiology and Performance, AOP. pp. 1-11. ISSN 1555-0265
DOI/ISBN	https://doi.org/10.1123/ijspp.2024-0393
Journal/Publisher	Human Kinetics International Journal of Sports Physiology and Performance
Rights/Publisher Set Statement	Policy: 'with proper acknowledgment (details below), authors may post their accept- ed manuscript on their own website or on websites/other electronic reposito- ries controlled by their academic institution as long as the article has been published (either as Ahead of Print or in final form) and the manuscript is in PDF or other image capturing format.' [from: https:// journals.humankinetics.com/page/copyright/copyright-and-permissions] Acknowledgment: Accepted author manuscript version reprinted, by permission, from Interna-tional Journal of Sports Physiology and Performance, 2025, AOP. pp. 1-11, https://doi.org/10.1123/ijspp.2024-0393 © Human Kinetics, Inc.
Link to item	https://journals.humankinetics.com/view/journals/ijspp/aop/article-10.1123- ijspp.2024-0393/article-10.1123-ijspp.2024-0393.xml

For more information, please contact wrapteam@worc.ac.uk

Tactical behaviors in men's and women's middle-distance global championship track finals

Journal:	International Journal of Sports Physiology and Performance
Manuscript ID	IJSPP.2024-0393.R1
Manuscript Type:	Original Investigation
Date Submitted by the Author:	20-Nov-2024
Complete List of Authors:	Comino, Pablo; Universidad Rey Juan Carlos, Centre for Sport Studies Foster, Carl; University of Wisconsin-La Crosse, Department of Exercise and Sport Science Renfree, Andrew; University of Worcester, School of Sport and Exercise Science Casado, Arturo; Universidad Rey Juan Carlos, Centre for Sport Studies
Keywords:	Athletics, Tactics, Pacing, Position, Performance

SCHOLARONE[™] Manuscripts Title of the article: Tactical behaviors in men's and women's middle-distance global championship track finals.

Submission type: Original investigation.

Authors: Pablo Comino 1*, Carl Foster ², Andrew Renfree ³, Arturo Casado ¹.

1. Rey Juan Carlos University, Madrid, Spain, Centre for Sport Studies.

2. Department Exercise and Sports Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin, United States.

3. University of Worcester, Worcester, United Kingdom, School of Sport and Exercise Science.

*Corresponding author contact details:

Pablo Comino

Rey Juan Carlos University,

Centre for Sport Studies,

Cam. del Molino, 5, 28942 Fuenlabrada, Madrid, Spain

Telephone: +34 625 539 654

Email: pablocominomarquez@gmail.com

Preferred running head: Tactical behaviors in middle-distance running.

Abstract word count: 247

Text-only word count: 3500

Number of tables: 4

Number of figures: 4

1 Title

2 Tactical behaviors in men's and women's middle-distance global championship track3 finals.

4 Abstract

Purpose: To analyze tactical behaviors associated with performance in track middle-5 distance global championship finals. Methods: Finalists' season-best (SB), finishing race 6 time (RT), 100m section times, and intermediate positions were obtained from 800-m and 7 1500-m men's and women's finals in two Olympic Games and five World 8 9 Championships. Differences between medalists (M), fourth to eighth (T8), and ninth to 12th/13th (T12) ranked finalists in relative performance (relative to SB), RT and section 10 times were determined. Pearson correlations between intermediate position and section 11 12 speed with final position, and probability of winning a medal at each race point were calculated. Results: A very high correlation was found between intermediate and final 13 position at first 100m in the women's 800-m (r = 0.84; p = 0.008), which was maintained 14 throughout the race. M were relatively faster than T8 in men's and women's 800-m finals 15 (p = 0.006; d = 0.87, and p = 0.039; d = 0.59, respectively). Differences in relative 16 performance between groups in 1500-m finals appeared at the end of the race, although 17 18 they arose earlier in women's races. Probability of winning a medal decreased with lower 19 intermediate positions, especially in the latest race stages. Conclusions: A high intermediate position as well as the ability to run fast in the latest race stages seem critical 20 to medaling in track middle-distance global championship finals. The abilities to adopt 21 22 leading positions for the whole 800-m event, and to generate an endspurt, relatively faster than the rest of competitors, in the 1500-m event, are critical. 23

24 Keywords: Athletics, tactics, pacing, position, performance.

25 Introduction

The middle-distance running track events (800-m and 1500-m) at global championships require both a pre-race plan and continuous decision-making regarding the regulation and distribution of energy throughout the race.¹ Athletes plan their strategy before the race depending on the quality and history of their main competitors, and the round of the championship (i.e., heats, semifinals or final). During the event they have to take into account internal (i.e., homeostatic disturbances),² and external conditions (behavior of their rivals),³ to modify their tactical approach with the aim of optimizing their
performance (i.e., finishing position), which may not necessarily involve winning, but
finishing in the best possible position.²

The presence of rivals affects athletes' decision-making during 800-m and 1500-m races, 35 36 which are the shortest track events in which athletes are not confined to their own lanes (except for the first 100m in the 800-m), thereby complicating the critical tactical 37 challenges. Several studies examining tactical and pacing behavior in middle-distance 38 running races have been conducted with the aim of assisting runners and their coaches to 39 optimize competitive outcome. For instance, athletes should consider the influence on 40 performance of running wide on the bends (i.e., covering a greater distance), versus 41 42 avoiding getting blocked or tripped by other competitors.^{4,5} Moreover, the effect of drafting, which causes a reduction in the aerodynamic resistance, is achieved by running 43 just behind other athletes, and can lead to a considerable reduction in the energy cost, 44 which is proportional to the runner's speed,⁶ while improving performance.⁷ 45

Furthermore, important differences in pacing and tactical behaviors were found between championship races, in which the aim is to achieve the highest final position, and 'meet' type of races, in which the goal is to finish as fast as possible.^{8,9} Therefore, race time (RT) is generally longer in championship races,^{9,10,11} also caused by the greater pace variability^{9,12} and the fatigue generated in qualification rounds.¹³

In both 800-m and 1500-m major championship finals, medalists are able to maintain a 51 fast speed over the final race stages.¹⁴ Furthermore, successful championships' women's 52 53 distance runners (those who advance to the next round, or achieve a podium) typically break clear of unsuccessful runners (those who are eliminated at qualification rounds, or 54 who do not achieve a podium) earlier in the race when compared to men.^{14,} However, no 55 differences have been found in performance relative to season best time (SB) between 56 successful and unsuccessful athletes in global championship middle-distance heats and 57 semifinals,^{15,16} although athletes who qualify as 'fastest losers' do so with a more high 58 59 risk strategy, characterized by a higher relative speed in the early stages of the race than the rest of competitors.¹⁷ 60

Additionally, high correlations were found between intermediate position (at different points of the race) and final position in middle-distance global championship qualification rounds, which increase as the end of the race approaches.¹⁶ In this regard, men's 1500-m

Olympic gold medalists usually run near the front of the race, and their position improves 64 as the race progresses.¹¹ In the case of 800-m races, a previous study determined how 65 dispersion between runners plays a critical role in achieving a top-3 finishing position, 66 especially that observed during the second lap.¹⁸ Furthermore, the concept of 'ROSPT' 67 (rank order section time) has been proposed, referring to a performance order of the 68 athletes over particular race sections. For example, an athlete being ROSPT 1 would have 69 been the fastest over that particular race section, the second fastest would have been 70 ROSPT 2, and so on.¹⁷ ROSPT showed a stronger correlation with final position than 71 72 intermediate positions, especially in the last lap of global championship 800-m and 1500m qualification rounds.¹⁷ Although the concept of "losing contact" or "falling behind" is 73 74 more usually thought of in relation to longer events, the reality is that many of the late finishers in 800-m and 1500-m events are always near the rear of the pack, effectively 75 having a low ROSPT throughout the race.¹⁹ In addition, the probability of qualification 76 for the next round in a global championship increased with a better intermediate 77 position^{16,17} and with a lower ROSPT.¹⁷ To the best of our knowledge, previous studies 78 have not conducted intermediate positioning analyses in middle-distance global 79 80 championship finals nor analyzed race sections as short as 100m. Therefore, the aims of this research were: a) to determine performance differences between medalist and non-81 medalists in global championship middle-distance finals; b) to assess the relationship 82 between intermediate positions and ROSPT with final positions; and c) to calculate the 83 probability of success (winning a medal) for each intermediate position and ROSPT. 84

Results of the present study may lead to a better understanding of the race planning and
decision-making process underpinning tactical behaviors of the athletes in 800-m and
1500-m global championship finals, and to generate a deeper knowledge of tactical
demands to win an international medal.

89 Methods

Subjects. Official electronic 100m section times in men's and women's 800-m and 1500m finals from two Olympic Games (OG; Rio 2016, and Tokyo 2020) and five World Championships (WC; Moscow 2013, London 2017, Doha 2019, Oregon 2022, and Budapest 2023) were obtained from the publicly available World Athletics website (https://worldathletics.org/) and other published documents.^{20,21} 800-m finals of 2016 OG and 1500-m finals of 2023 WC were excluded from the analysis due to lack of some publicly available section times, and errors in some athletes' section times, respectively. 97 Other global championships from a similar timeframe were excluded due to the absence 98 of 100-m section data (e.g., London 2012 OG, Beijing 2015 WC and Paris 2024 OG). 99 The total number of athletes was 241, who were divided into medalists (M, n = 18 [per 100 event]), fourth to eighth (T8, n = 29 in both men's and women's 800-m finals and 30 in 101 both men's and women's 1500-m finals), and ninth to $12^{th}/13^{th}$ (T12, n = 26 in men's 1500-m finals and 25 in women's 1500-m finals) ranked finalists.

103 **Design and methodology.** An observational approach was adopted. For each athlete, the 104 average final race (S_F) and SB (S_{SB}) speeds were obtained (speed = distance/time). 105 Subsequently, relative performance to athletes' SB ([S_F/S_{SB}]*100) was calculated. 106 Relative 100m section speed to that of SB was calculated for each athlete 107 ([$S_{Section}/S_{SB}$]*100).

ROSPT was calculated for each athlete and 100m section time.¹⁷ Average intermediate
position and ROSPT were calculated at each race point for each available position (8-9
positions in the 800-m, and 12-13 in the 1500-m).

- Probability of winning a medal was calculated for each intermediate position and ROSPT, as the number of runners who achieved a medal divided by the number of runners who were at each available position or recorded each available ROSPT, at each intermediate point. So, in the case that, for instance, six runners were in third position at the 600m point of the 800-m races and three of them achieved a medal, the probability of achieving a medal from third position at 600m would be 0.5 or 50%.
- Statistical analysis. Statistical analyses were performed with Statistical Package of Social
 Sciences (SPSS) software, 27.0 version (IBM, Armonk, NY), and figures were made with
 GraphPad Prism, 8th version (GraphPad Software Inc, San Diego, CA). The normality of
 distribution of the variables was assessed using Shapiro-Wilk test.
- Relative performance and section speed differences between medalists and T8 in 800-m finals were assessed using independent t-tests, whereas in the 1500-m, 1-way ANOVA was used to determine these differences between medalists, T8 and T12. The Tukey post hoc test was conducted if significant differences existed for the 1500-m groups. Effect size (ES) was calculated using Cohen's *d* for the independent t-tests and Tukey tests,²² and eta partial squared (η_p^2) for the 1-way ANOVAs.²³ Cohen's *d* was considered trivial (d < 0.2), small (0.2-0.6), moderate (0.6-1.2), large (1.2-2.0), and very large (2.0-4.0),²⁴

128 whereas η_p^2 was considered to be small ($\eta_p^2 < 0.01$), moderate (0.01-0.06) or large ($\eta_p^2 > 0.15$).²²

Pearson's product correlation was used to analyze the relationships between intermediate position and ROSPT with final position, both in 800-m and 1500-m races, the magnitude of the correlation was measured using the following thresholds: <0.1-0.3 (small), <0.3-0.5 (moderate), <0.5-0.7 (large), <0.7-0.9 (very large) and <0.9-1 (extremely large).²⁴ Statistical significance was accepted when p < 0.05, differences between groups are presented with a 95% confidence interval (CI). Data for each group will be presented as mean (standard deviation).

137 Results

138 Men's and women's 800-m M were faster relative to their SB (99.5% [0.88%] and 139 100.43% [0.82%], respectively) than T8 (98.62% [1.08%] and 99.83% [1.12%], 140 respectively; p = 0.006; 95% CI, 0.27-1.49; d = 0.87, and p = 0.039; 95% CI, 0.03-1.16; 141 d = 0.59, respectively) (Figures 1A and 1B); whereas significant differences were not 142 found between 1500-m groups (Figures 1C and 1D).

143 ***Figure 1 around here***

Regarding sections' performance relative to SB, men's 800-m M were relatively faster than T8 in the 700-800m section (97.67% [4.4%], and 94.16% [6.53%], respectively; p =0.05; 95% CI, 0.002-7.03; d = 0.6) (Figure 2A). Women's 800-m M were relatively slower than T8 in the 300-400m section (96.32% [2.16] and 97.65% [1.84%], respectively; p = 0.019; 95% CI, -2.42- [-0.22]; d = -0.67), but relatively faster in the 700-800m section: (100.01% [3.92%] and 94.92% [4.23%], respectively; p < 0.001; 95% CI, 2.8-7.38; d = 1.24) (Figure 2B).

In the 1500-m, men's M were relatively faster than T8 and T12 in both 1300-1400m 151 152 (105.42% [3.25%], 105.16% [3.51%]and 101.23% [6.25%], respectively; p = 0.003; η_p^2 = 0.15) and 1400-1500m sections (105.92% [4.73%], 103.96% [5.35%] and 99.18% 153 [8.17%], respectively; p = 0.002; $\eta_p^2 = 0.16$) (Figure 2C). On the other hand, women's 154 M were relatively faster than T8 and T12 from the 1100-1200m section onwards. 155 156 Specifically, at the 1100-1200m (105.72% [5.,48%], 105.13% [5.73%] and 101.6% [6.22%], respectively; p = 0.024; $\eta_p^2 = 0.1$), 1200-1300m: (108.95% [4.15%], 105.86% 157 [5.4%] and 101.19% [7.08%], respectively; p < 0.001; $\eta_p^2 = 0.22$), 1300-1400m (107.01%) 158

159 [4.04%], 102.88% [4.69%] and 98.34% [5.79%], respectively; p < 0.001; $\eta_p^2 = 0.31$) and 160 1400-1500m (101.32% [5.06%], 99.6% [5.05%] and 96.55% [7.05%], respectively; p =161 0.027; $\eta_p^2 = 0.1$) sections (Figure 2D).

162 ***Figure 2 around here***

Correlation between intermediate and final position increases as the race progresses in 163 the men's 800-m, being even negative in the first stage of the race (100m and 200m 164 points). This correlation does not become large until 600m (r > 0.5). However, in 165 women's 800-m finals, a very or extremely large correlation exists from the 100m point 166 onwards, and it is maintained throughout the whole race (Table 1). ROSPT showed a 167 higher correlation with final position than intermediate position in men's 800-m finals. 168 especially in the last 200m of the race, whereas a high correlation was found in the first 169 100m section in women's 800-m and all those of the second lap (Table 1). 170

171 ***Table 1 around here***

172 In the 1500-m, correlation between intermediate and final position increases as the race progresses in both men's and women's finals. Nevertheless, this correlation increases at 173 174 a faster rate in women, being extremely large (r > 0.9) from 900m onwards, whereas that magnitude of correlation was found from the 1100m onwards in men (Table 1). ROSPT 175 correlation with final position increases with distance, being extremely large in the last 176 two sections in men's finals (r > 0.9). This correlation was 0.89 or higher in all sections 177 of the second half of the race in women's 1500-m finals, except for the last one (r = 0.86)178 (Table 1). 179

Race positions showed a greater stability in women's 800-m finals (Figure 3B) compared to that in their men's counterparts (Figure 3A). Women's M were at higher position than T8 at all intermediate points (p < 0.01; 95% CI; -3.2 $\leq d \leq$ -0.8) (Figure 4B), whereas men's M were only at higher position than T8 at the 600m (p = 0.006; 95% CI, -3.2 – [-0.58], d = -0.86) and 700m points, (p = 0.004; 95% CI, -4.16 – [-1.92], d = -1.62, respectively) (Figure 4A).

186 ***Figure 3 around here***

Stability in race positions is similar in both men's (Figure 3C) and women's (Figure 3D)
1500-m finals. However, in the second half of the race, a higher stability is observed in

women's. Differences in intermediate positions between groups were found from 300m onwards (p < 0.05; 95% CI), in men (Figure 4C) and women (Figure 4D).

191 ***Figure 4 around here***

Probability of winning a medal decreases with a lower position or ROSPT at each intermediate point or section in both men's and women's 800-m (Table 2) and 1500-m (Tables 3 and 4) finals. The first positioned athlete at 600m and 700m points in women's 800-m finals has a probability of 100% of winning a medal. However, in 1500-m finals, athletes in podium position at the beginning of the last lap have a probability of 50% or more to win a medal. That percentage increases throughout the last lap, and especially in runners displaying a higher ROSPT.

199 ***Table 2 around here***

- 200 ***Table 3 around here***
- 201 ***Table 4 around here***

202 Discussion

The aim of this study was to analyze tactical behaviors related to performance in 800-m and 1500-m global championships finals using positional and time data every 100m. A similar analysis was carried out in global championships' qualifying rounds^{16,17} with lower resolution data.

207 Mean performance in men's 800-m and men's and women's 1500-m finals were slower than their mean SBs, as found in a previous study analyzing global championships' 208 qualifying rounds.¹⁷ This may be due to the different goals inherent to championship (i.e., 209 achieving the highest position) vs meet (i.e., obtaining the fastest time) races,⁹ greater 210 pace variability typically observed in championship vs. meet races,¹² the absence of 211 pacemakers,⁸ and the fatigue generated in qualifying rounds.¹³ These slower relative 212 213 times were not found in women's 800-m finals, probably due to the more 'even' strategy displayed in women's races.¹⁰ This phenomenon was also observed in other distances 214 such as the marathon, in which women display a more conservative start of the race,²⁵ 215 and a lower speed drop-off in the second half of the race compared to men.²⁶ while 216 producing a fast endspurt, especially in major championship races.²⁷ This disparity may 217 be multifactorial, with physiological (e.g., higher rates of glycogen depletion in men),²⁸ 218 neuromuscular (e.g., a higher proportion of type I muscle fibers in women)²⁹ and 219

psychological (e.g., men tending to exhibit more overambitious behavior than women)²⁶
factors potentially contributing to these sex differences.

222 Previous studies found that medalists at global championships typically advance to the final with relatively less exertion than their rivals, who need to make a maximal effort in 223 224 qualifying rounds in order to secure a place in the final,¹³ while employing a riskier strategy.¹⁷ This extra effort leads to increased fatigue which potentially explains the 225 differences in relative time to SBs found between 800-m groups. In this sense, the new 226 play-off rounds introduced in Paris 2024 OG could play an important role in the 227 qualification process, as they offer a second opportunity to the athletes who have not 228 qualified for the next round. However, this also results in an increased physical load, as 229 230 athletes are required to participate in an additional race, potentially generating a higher 231 fatigue level in subsequent rounds.

Analyzing relative sections' speed profile, a consistent pattern emerges in both 800-m 232 men's (Figure 2A) and women's (Figure 2B) finals. The T8 group exhibits a higher 233 relative speed in several sections during the first lap, enabling medalists to conserve 234 energy and finish the race significantly faster than their competitors. This may suggest 235 236 that medalists were able to achieve higher speeds in the final segment by better preserving their physiological reserve during the earlier race stages.³⁰ Notably, in the women's finals, 237 the T8 group demonstrates a higher relative speed in the 300-400m section, whereas the 238 opposite trend is observed in the final 100m. This phenomenon was documented in a 239 previous study, suggesting that non-medalists expend additional energy in the initial lap 240 241 by trying to remain with the leading group and benefit from the drafting effect.¹¹

In the 1500-m event, differences in sections relative speed between groups appear in the 242 243 final stages of the race, although they manifest earlier in women (i.e., at the 1100-1200m section, Figure 2D), than men (i.e., at the 1300-1400m section, Figure 2C). Similarly, 244 245 findings from a previous study reveal that 1500-m women's global championship medalists left their rivals behind earlier in the race (i.e., at the 1200m point) than their 246 men's counterparts (i.e., in the last 100m).¹⁴ Consequently, in the 1500-m event, in which 247 variable pacing results in relative finishing times slower than SB,¹⁰ the ability to generate 248 249 a fast endspurt by running the final race stages at a higher speed than that of SB significantly enhances the likelihood of winning a medal. Additionally, a previous study 250 showed that the first lap of 1500-m meet races are faster than those in championships, 251 whereas the latter sections of the race are faster in championship races.⁹ Furthermore, 252

findings from another study indicates that medalist exhibit greater pace variability than
non-medalists in middle-distance events such as 400-m swimming and 1500-m running,
with the medalists being much faster in the last lap of the race.³¹ This underscores the
importance of the endspurt in middle-distance races and the necessity for distinct training

approaches for championship compared to meet races.³²

258 Correlation between intermediate and final position is notably large in women's 800-m from the first intermediate point (Table 1), and this strong correlation persists throughout 259 the race. This observation may explain the higher positional stability observed in 260 261 women's 800-m finals (Figure 3B), compared to those in men (Figure 3A). This correlation is higher than in previous rounds,^{16,17} indicating that the highest-level athletes 262 263 tend to take leading positions early in the race during women's 800-m finals. Differences in intermediate position between groups of women's 800-m finals appeared from the 264 265 beginning of the race (Figure 4B). These results align to those of previous studies which demonstrated a higher density level in men's races, making it more difficult to create a 266 gap between medalist and non-medalist runners.³² By contrast, the lower density in 267 women's races presumably allowed the fastest ones to adopt high speeds from the 268 beginning and a more even pace throughout the race.³³ In men's 800-m finals, differences 269 in intermediate position become apparent from 600m onwards (Figure 4A). At this point, 270 the correlation between intermediate and final positions becomes large (Table 1). Despite 271 this, the final position shows a greater correlation with ROSPT in men's 800-m finals, 272 particularly in the last lap, as noted in a previous study.¹⁷ The ROSPT of the last lap is 273 also highly related to the finishing position in women's 800-m finals, underscoring the 274 importance of not only the positioning ability, but also that of generating a fast endspurt. 275

276 In the 1500-m event, the correlation between intermediate and final positions increases more rapidly in women's finals (Table 1), exceeding 0.9 at 900m. From that point 277 278 onwards, little position change is observed (Figure 3D). In men, a correlation above 0.9 279 is observed later at 1100m. This difference may be attributed to the earlier separation in 280 the race between medalists and non-medalists in women's finals.¹⁴ This earlier separation in women's finals could explain the higher correlation between ROSPT and final position 281 282 in the last 100m of men's 1500-m finals compared to women's (Table 1), as men tend to 283 reach the last section closer to each other.

The higher data resolution allows for the observation of more changes in position than in previous studies,^{16,17} although, as in that investigation, higher positional stability is observed in 800-m races compared to 1500-m races. This stability is more pronounced in
women's events (Figure 3), particularly in 800-m finals, which enables athletes to employ
a more 'even' strategy.¹⁰ Consequently, athletes may cover a lower total distance by
avoiding running wide on the bends,⁴ due to fewer overtakes, thus achieving final times
faster than their SB (Figure 1B).

291 Previous research has established that higher intermediate position increases the probability of success,^{16,17} both in middle distance preliminary rounds and semifinals. A 292 similar pattern is observed in 800-m (Table 2) and 1500-m (Table 3) finals, albeit with 293 294 lower percentages than those reported in the aforementioned studies.^{16,17} This discrepancy may be attributed to the higher density level in the finals, where only the top 8-12 athletes 295 296 in the world are competing, and by the fewer number of successful athletes in the finals (three medalists) compared to that in previous rounds (e.g., 5-6 qualifiers for the next 297 298 round).

- A better ROSPT increases the probability of winning a medal, both in 800-m (Table 2) and 1500-m (Table 4) finals and is particularly crucial in the final stages of the race. This finding underscores the importance of a fast endspurt.
- The limited numbers of races included may influence the interpretation of the results, as different race paces or strategies could introduce bias into the study's outcomes. Further research will be required to confirm these results.

305 Practical applications

The findings of this study will be useful for coaches in planning specific training sessions for athletes preparing for global championships. Such preparation should enable athletes to run races with a higher pace variability than that typically performed during meet races, and to maintain very high speeds in the final stages of the race.

- Additionally, it is essential for athletes to understand the tactical aspects influencing the achievement of a medal. This includes the necessity of maintaining proper positioning, especially in the final sections of the race, and recognizing that women's 800-m and 1500m medalists tend to adopt higher positions earlier in the race than their men's counterparts.
- Finally, the authors highlight that the tactical behaviors analyzed were executed by elite athletes, and the success derived from their implementation largely depends on their

317 exceptional physical and psychological abilities. Overgeneralizing these behaviors would

- 318 be erroneous, as non-elite competitions involves distinct contexts and the capabilities of
- athletes differ significantly from those of competitors at the highest level.

320 Conclusions

Our analysis has delved into the tactical elements influencing medal achievement in 321 middle-distance track events, revealing differences across events and sexes. Women's 322 323 800-m finals are distinguished by a very large correlation between intermediate and final position from the race start, fostering greater positional stability. Conversely, in men's 324 325 800-m finals, the highest correlations between intermediate and final position were found in the final 200m. Lower-level athletes tend to run the first half of the race at a higher 326 relative speed, presumably to maintain proximity to the leading group and benefit from 327 the drafting provided by the rest of competitors. 328

In 1500-m, differences in relative section speeds were found in the final stages of the race, manifesting earlier in women's finals. The ability to run the final race stage at speeds much higher than that of athletes' SB is crucial for medal contention. This ability is influenced by the numerous fluctuations in pace experiences in preceding sections, a hallmark of championship races.

A poor positioning behavior or a relative slowing with respect to the rest of the competitors, will considerably reduce the probability of winning a medal, particularly in the last lap of the race. This underscores the rigorous standards demanded for the achievement of an Olympic or World Championship medal in middle-distance track events.

339 **References**

- Abbis CR, Laursen, PB. Describing and understanding pacing strategies during
 athletic competition. *Sports Medicine*. 2008;38(3):239-252. doi:
 10.2165/00007256-200838030-00004.
- Foster C, de Koning JJ, Hettinga FJ, Barroso R, Boullosa D, Casado A, Cortis C,
 Fusco A, Gregorich H, Jaime S, Jones AM, Malterer KR, Pettitt R, Porcari JP,
 Pratt C, Reinschmidt P, Skiba P, Splinter A, St Clair Gibson A, St Mary J, Thiel
 C, Uithoven K, van Tunen J. Competition between desired competitive result,
 tolerable homeostatic disturbance, and psychophysiological interpretation

348		determines pacing strategy. International Jorunal of Sports Physiology and
349		Performance. 2023;18(4):335-346. doi: 10.1123/ijspp.2022-0171.
350	3.	Hettinga FJ, Konings MJ, Pepping, G. The science of racing against opponents:
351		Affordance competition and the regulation of exercise intensity in head-to-head
352		competition. Frontiers in Physiology. 2017;8:118. doi:
353		10.3389/fphys.2017.00118.
354	4.	González-Mohíno F, Casado A, Renfree A, González-Ravé JM, Hanley B. The
355		influence of running wide on the bend on finishing times and positions in men's
356		800 m finals at major global championships. Kinesiology. 2021;53(2):280-287.
357		doi: 10.26582/k.53.2.13.
358	5.	Jones AM, Whipp BJ. Bioenergetic constraints on tactical decision making in
359		middle distance running. British Journal of Sports Medicine. 2002;36(2):102-104.
360		doi: 10.1136/bjsm.36.2.102.
361	6.	Pugh LH. The influence of wind resistance in running and walking and the
362		mecanical efficiency of work against horizontal or vertical forces. The Journal of
363		Phisiology. 1971;213(2):255-276. doi: 10.1113/jphysiol.1971.sp009381.
364	7.	Casado A, Moreno-Pérez D, Larrosa M, Renfree A. Different
365		psychophysiological responses to a high-intensity repetition session performed
366		alone or in a group by elite middle-distance runners. European Journal of Sport
367		Science. 2019;19(8):1045-1052. doi: 10.1080/17461391.2019.1593510.
368	8.	Casado A, Hanley B, Jimenez-Reyes P, Renfree A. Pacing profiles and tactical
369		behaviors of elite runners. Journal of Sport and Health Science. 2021;10(5):537-
370		549. doi: 10.1016/j.jshs.2020.06.011.
371	9.	Casado A, Ranieri LE, Hanley B, Foster C, González-Mohíno F. Differences in
372		pacing behaviour between global championship medal performances and world
373		records in men's and women's middle- and long-distance running track events.
374		Journal of Sports Sciences. 2024;42(4):358-364. doi:
375		10.1080/02640414.2024.2330819.
376	10	. Casado A, Renfree A, Maroto-Sánchez B, Hanley B. Individual performances
377		relative to season bests in major track running championship races are distance-,
378		position- and sex- dependent. European Journal of Human Movement.
379		2020;44:146-161. doi: 10.21134/eurjhm.2020.44.526.
380	11	Foster C, Hanley B, Barroso R, Boullosa D, Casado A, Haugen T, Hettinga FJ,
381		Jones AM, Renfree A, Skiba P, St Clair Gibson A, Thiel C, de Koning, JJ.

- Evolution of 1500-m Olympic running performance. *International Journal of Sports Physiology and Performance*. 2023;19(1):62-70. doi: 10.1123/ijspp.2023-0289.
- Thiel C, Foster C, Banzer W, de Koning JJ. Pacing in Olympic track races:
 competitive tactics versus best performance strategy. *Journal of Sports Sciences*.
 2012;30(11):1107-1115. doi: 10.1080/02640414.2012.701759.
- 13. Hanley B, Hettinga FJ. Champions are racers, not pacers: an analysis of
 qualification patterns of Olympic and IAAF World Championship middle
 distance runners. *Journal of Sports Science*. 2018;36(22):2614-2620. doi:
 10.1080/02640414.2018.1472200.
- 14. Hettinga FJ, Edwards AM, Hanley B. The science behind competition and
 winning in athletics: Using world-level competition data to explore pacing and
 tactics. *Frontiers in Sports and Acting Living*. 2019;1:11. doi:
 10.3389/fspor.2019.00011.
- 15. Hanley B, Stellingwerff T, Hettinga FJ. Successful pacing profiles of Olympic
 and IAAF World Championship middle-distance runners across qualifying rounds
 and finals. *International Journal of Sports Physiology and Performance*.
 2019;14(7):894-901. doi: 10.1123/ijspp.2018-0742.
- 16. Renfree A, Mytton GJ, Skorski S, St Clair Gibson A. Tactical considerations in
 the middle-distance running events at the 2012 Olympic Games: A case study. *International Journal of Sports Physiology and Performance*. 2014;9(2):362–364.
 doi: 10.1123/ijspp.2013-0020.
- 404 17. Casado A, Renfree A. Fortune favors the brave: Tactical behaviors in the middle405 distance running events at the 2017 IAAF world championships. *International*406 *Journal of Sports Physiology and Performance*. 2018;13(10):1386-1391. doi:
 407 10.1123/ijspp.2018-0055.
- 408 18. González-Mohíno F, Del Cerro JS, Renfree A, Yustres I, González-Ravé JM. The
 409 Relationship between Tactical Positioning and the Race Outcome in 800-M
 410 Running at the 2016 Olympic Games and 2017 IAAF World Championship.
 411 *Journal of Human Kinetics*. 2020;31(71):299-305. doi: 10.2478/hukin-2019-0090
- 412 19. Foster C, Barroso R, Bok D, Boullosa D, Casado A, Costis C, Fusco A, Hanley
 413 B, Skiba P, de Koning JJ. "Falling Behind," "Letting Go," and Being
 414 "Outsprinted" as Distinct Features of Pacing in Distance Running. *International*415 *Journal of Sports Physiology and Performance*. 2024;19(9):867-873.

416	20. Almeida A. Results Book: Rio 2016. Rio de Janeiro: Rio 2016 Organising
417	Committee.
418	21. Hanley B, Bissas A. Time analysis for the IAAF World Championships London
419	2017.
420	22. Cohen, J. (1988). Statistical Power Analysis for the behavioral sciences (2 nd ed.).
421	Routledge. https://doi.org/10.4324/9780203771587.
422	23. Levine TR, Hullett CR. Eta squared, partial eta squared, and misreporting of effect
423	size in communication research. Human communication research.
424	2002;28(4):612-625. doi: 10.1111/j.1468-2958.2002.tb00828.x
425	24. Hopkins WC, Marshall SW, Batterham AM, Hanin J. Progressive statistics for
426	studies in sports medicine and exercise science. Medicine and Science in Sports
427	and Exercise. 2009;41(1):3-13. doi: 10.1249/MSS.0b013e31818cb278.
428	25. Hanley B. Pacing, packing and sex-based differences in Olympic and IAAF
429	World Championship marathons. Journal of Sports Sciences. 2016;34(17):1675-
430	1681. doi: 10.1080/02640414.2015.1132841.
431	26. Deaner RO, Carter RE, Joyner MJ, Hunter SK. Men are more likely than women
432	to slow in the marathon. Medicine and Science in Sports and Exercise.
433	2015;47(3):607-616. doi: 10.1249/MSS.000000000000432.
433 434	2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. 27. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and
433 434 435	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. 27. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World
433 434 435 436	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. 27. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi:
433 434 435 436 437	 2015;47(3):607-616. doi: 10.1249/MSS.0000000000000432. 27. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13
433 434 435 436 437 438	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. 27. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 28. Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta
433 434 435 436 437 438 439	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. 27. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 28. Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. <i>Medicine and Science Sports and Exercise</i>. 2008;40(4):648-54. doi:
433 434 435 436 437 438 439 440	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. 27. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 28. Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. <i>Medicine and Science Sports and Exercise</i>. 2008;40(4):648-54. doi: 10.1249/MSS.0b013e31816212ff.
433 434 435 436 437 438 439 440 441	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. 27. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 28. Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. <i>Medicine and Science Sports and Exercise</i>. 2008;40(4):648-54. doi: 10.1249/MSS.0b013e31816212ff. 29. Hunter SK. Sex differences in human fatigability: mechanisms and insight to
433 434 435 436 437 438 439 440 441 442	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. 27. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 28. Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. <i>Medicine and Science Sports and Exercise</i>. 2008;40(4):648-54. doi: 10.1249/MSS.0b013e31816212ff. 29. Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. <i>Acta Physiologica</i>. 2014;210(4):768-89. doi:
433 434 435 436 437 438 439 440 441 442 443	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. <i>Medicine and Science Sports and Exercise</i>. 2008;40(4):648-54. doi: 10.1249/MSS.0b013e31816212ff. Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. <i>Acta Physiologica</i>. 2014;210(4):768-89. doi: 10.1111/apha.12234.
433 434 435 436 437 438 439 440 441 442 443 444	 2015;47(3):607-616. doi: 10.1249/MSS.00000000000432. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. <i>Medicine and Science Sports and Exercise</i>. 2008;40(4):648-54. doi: 10.1249/MSS.0b013e31816212ff. Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. <i>Acta Physiologica</i>. 2014;210(4):768-89. doi: 10.1111/apha.12234. Swart J, Lamberts RP, Lambert MI, Lambert EV, Woolrich RW, Johnston S,
433 434 435 436 437 438 439 440 441 442 443 444 445	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. <i>Medicine and Science Sports and Exercise</i>. 2008;40(4):648-54. doi: 10.1249/MSS.0b013e31816212ff. Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. <i>Acta Physiologica</i>. 2014;210(4):768-89. doi: 10.1111/apha.12234. Swart J, Lamberts RP, Lambert MI, Lambert EV, Woolrich RW, Johnston S, Noakes TD. Exercising with reserve: exercise regulation by perceived exertion in
433 434 435 436 437 438 439 440 441 442 443 444 445 446	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. <i>Medicine and Science Sports and Exercise</i>. 2008;40(4):648-54. doi: 10.1249/MSS.0b013e31816212ff. Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. <i>Acta Physiologica</i>. 2014;210(4):768-89. doi: 10.1111/apha.12234. Swart J, Lamberts RP, Lambert MI, Lambert EV, Woolrich RW, Johnston S, Noakes TD. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint. <i>British Journal of</i>
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447	 2015;47(3):607-616. doi: 10.1249/MSS.00000000000432. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. <i>Medicine and Science Sports and Exercise</i>. 2008;40(4):648-54. doi: 10.1249/MSS.0b013e31816212ff. Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. <i>Acta Physiologica</i>. 2014;210(4):768-89. doi: 10.1111/apha.12234. Swart J, Lamberts RP, Lambert MI, Lambert EV, Woolrich RW, Johnston S, Noakes TD. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint. <i>British Journal of Sports Medicine</i>. 2009;43(10):775-781. doi: 10.1136/bjsm.2008.056036.
 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 	 2015;47(3):607-616. doi: 10.1249/MSS.000000000000432. Casado A, Ranieri LE, Díaz JJ, Hanley B, Foster C. Pacing strategies in men's and women's world- record marathon performances and Olympic Games and World Championship's winning performances. <i>Kinesiology</i>. 2024;56(1):156-162. doi: 10.26582/k.56.1.13 Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. <i>Medicine and Science Sports and Exercise</i>. 2008;40(4):648-54. doi: 10.1249/MSS.0b013e31816212ff. Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. <i>Acta Physiologica</i>. 2014;210(4):768-89. doi: 10.1111/apha.12234. Swart J, Lamberts RP, Lambert MI, Lambert EV, Woolrich RW, Johnston S, Noakes TD. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint. <i>British Journal of Sports Medicine</i>. 2009;43(10):775-781. doi: 10.1136/bjsm.2008.056036. Mytton GJ, Archer DT, Turner L, Skorski S, Renfree A, Thompson KG, St Clair

 451 Journal of Sports Physiology and Performance. 201 452 10.1123/ijspp.2014-0207. 	5;10(3):369-373. doi:
452 10.1123/ijspp.2014-0207.	
453 32. Filipas L, La Torre A, Hanley B. Pacing profiles of Olym	mpic and IAAF world
454 Championships long-distance runners. Journal of Stren	ngth and Conditioning
455 <i>Research</i> . 2021;35(4):1134-1140. doi: 10.1519/JSC.00000	00000002873.
456 33. Foster C, de Koning JJ, Thiel C. Evolutionary pattern of im	proved 1-mile running
457 performance. International Journal of Sports Physiolo	gy and Performance.
458 2014;9(4):715-719. doi: 10.1123/ijspp.2013-0318	
459	
460	
461	
462	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	

477 Figure captions

- Figure 1: Mean race speed relative to S_{SB} (%) in M and T8 groups in 800-m finals and P, T8 and T12 groups in 1500-m finals. Differences between groups are represented by * (*p*
- 480 < 0.05). S_{SB}, Season best speed; M, Medallists; T8, Top 8; T12, Top 12.
- 481 Figure 2: Mean section speeds relative to S_{SB} (%) in M, T8 and T12 groups of 800-m and
- 482 1500-m finals. Differences between groups (p < 0.05) are represented by * (M vs T8), #
- 483 (M vs T12) and † (T8 vs T12) in the corresponding section. A double symbol represents
- 484 differences with p < 0.01. S_{SB}, Season best speed; M, Medallists; T8, Top 8, T12, Top 12.
- Figure 3: Mean intermediate positions of athletes finishing in each available position in
 800-m and 1500-m races.
- 487 Figure 4: Mean intermediate positions of M, T8 and T12 groups in 800-m and 1500-m

finals. Differences between groups (p < 0.05) are represented by * (M vs T8), # (M vs T12) and † (T8 vs T12) in the corresponding section. A double symbol represents differences with p < 0.01. M, Medallists; T8, Top 8, T12, Top 12.

Distance	r (M800)	r (W800)	Section	r (M800)	r (W800)
100m	-0.39	0.84 **	0-100m	-0.39	0.84 **
200m	-0.15	0.74 *	100-200m	0.66	0.19
300m	0.14	0.77 *	200-300m	0.48	0.4
400m	0.49	0.8 *	300-400m	0.75 *	-0.02
500m	0.44	0.79 *	400-500m	0.68 *	0.79 *
600m	0.66	0.9 **	500-600m	0.81 **	0.91 **
700m	0.85 **	0.96 **	600-700m	0.97 **	0.95 **
800m	-	-	700-800m	0.91 **	0.99 **
Distance	r (M1500)	r (W1500)	Section	r (M1500)	r (W1500)
100m	0.02	0	0-100m	0.12	0
200m	0.42	0.35	100-200m	0.75 **	0.41
300m	0.55	0.77 **	200-300m	0.52	0.57 *
400m	0.59 *	0.75 **	300-400m	0.58 *	0.70 **
500m	0.67 *	0.78 **	400-500m	0.52	0.60 *
600m	0.71 **	0.81 **	500-600m	0.72 **	0.80 **
700m	0.78 **	0.84 **	600-700m	0.70 **	0.43
800m	0.81 **	0.90 **	700-800m	0.54	0.94 **
900m	0.81 **	0.93 **	800-900m	0.79 **	0.89 **
1000m	0.85 **	0.93 **	900-1000m	0.87 **	0.94 **
1100m	0.93 **	0.95 **	1000-1100m	0.81 **	0.89 **
1200m	0.95 **	0.96 **	1100-1200m	0.89 **	0.98 **
1300m	0.97 **	0.97 **	1200-1300m	0.77 **	0.98 **
1400m	0.99 **	0.99 **	1300-1400m	0.92 **	0.99 **
1500m	-	-	1400-1500m	0.94 **	0.86 **

Table 1: Correlation of intermediate position and ROSPT with final positionIntermediate positionROSPT

504r, Pearson's product correlation; ROSPT, Rank order section time; M800, Men's 800-m;505W800, Women's 800-m; M1500, Men's 1500-m; W1500, Women's 1500-m; p-value506represented with * (p < 0.05) and ** (p < 0.01).

507

508

	Men' 800-m							Women's 800-m								
P 800	P 100m	P 200m	P 300m	P 400m	P 500m	P 600m	P 700m		P 100m	P 200m	P 300m	P 400m	P 500m	P 600m	P 700m	
1°	33.3	16.7	33.3	50	33.3	66.7	83.3		100	83.3	83.3	66.7	83.3	100	100	
2°	16.7	66.7	83.3	50	66.7	50	83.3		50.0	66.7	50.0	83.3	66.7	66.7	66.7	
3°	0	16.7	16.7	50	33.3	50	33.3		66.7	33.3	50.0	33.3	33.3	66.7	66.7	
4°	66.7	33.3	0	16.7	50	33.3	50		16.7	33.3	50.0	33.3	50	16.7	16.7	
5°	50	50	16.7	33.3	16.7	50	50		16.7	16.7	16.7	0	0	16.7	16.7	
6°	66.7	50	83.3	33.3	50	33.3	0		0	16.7	16.7	50	16.7	0	0	
7°	33.3	33.3	16.7	33.3	33.3	16.7	0		33.3	33.3	16.7	16.7	33.3	33.3	33.3	
8°	16.7	33.3	50	33.3	16.7	0	0		16.7	16.7	16.7	16.7	16.7	0	0	
9°	16.7	0	0	0	0	0	0		-	-	-	-	-	-	-	
ROSPT 800	0-100m	100-200m	200-300m	300-400m	400-500m	500-600m	600-700m	700-800m	0-100m	100-200m	200-300m	300-400m	400-500m	500-600m	600-700m	700-800m
1°	33.3	33.3	33.3	50	50	83.3	100	33.3	100	33.3	50	33.3	66.7	50	83.3	100
2°	16.7	66.7	50	66.7	66.7	66.7	83.3	66.7	50.0	50	50	16.7	33.3	66.7	50.0	83.3
3°	16.7	33.3	16.7	16.7	50	50	50	83.3	66.7	50	66.7	33.3	66.7	50	83.3	50
4°	50	50	50	50	16.7	33.3	33.3	50	16.7	33.3	33.3	33.3	33.3	33.3	33.3	33.3
5°	50	33.3	16.7	16.7	33.3	33.3	33.3	66.7	16.7	50.0	0	83.3	50	33.3	16.7	16.7
6°	83.3	50	50	50	50	0	0	0	0	50.0	33.3	33.3	16.7	50	33.3	16.7
7°	16.7	16.7	66.7	0	16.7	16.7	0	0	33.3	33.3	33.3	0	16.7	16.7	0	0
8°	16.7	16.7	16.7	50	16.7	16.7	0	0	16.7	0	33.3	66.7	16.7	0	0	0
9°	16.7	0	0	0	0	0	0	0	-	-0		-	-	-	-	-
P, P 800-	osition	i; RO	SPT,	Ran	k ord	ler se	ction	time	; M80	0, M	en's	800-1	m; W	7800,	Won	nen's

Table 2. Probability (%) of winning a medal for athletes in each position and **ROSPT in 800-m finals**

P M150	P 100m	P 200m	P 300m	P 400m	P 500m	P 600m	P 700m	P 800m	P 900m	P 1000m	P 1100m	P 1200m	P 1300m	P 1400m
1º	66.7	83.3	83.3	83.3	66.7	66.7	83.3	66.7	83.3	66.7	66.7	83.3	83.3	83.3
2°	16.7	16.7	16.7	16.7	50	50	50	66.7	50	66.7	66.7	66.7	83.3	83.3
3°	33.3	16.7	33.3	33.3	16.7	16.7	16.7	33.3	33.3	33.3	50	50	66.7	83.3
4°	16.7	16.7	16.7	33.3	33.3	33.3	33.3	50	33.3	33.3	16.7	33.3	16.7	16.7
5°	0	33.3	16.7	33.3	16.7	33.3	16.7	0	16.7	16.7	33.3	0	0	0
6°	16.7	33.3	66.7	33.3	50	0	0	0	16.7	33.3	16.7	33.3	50	33.3
7°	33.3	16.7	16.7	0	0	33.3	0	33.3	16.7	0	33.3	16.7	0	0
8°	33.3	33.3	16.7	33.3	16.7	33.3	50	16.7	0	0	0	16.7	0	0
9°	0	0	16.7	0	33.3	33.3	16.7	0	16.7	16.7	16.7	0	0	0
10°	33.3	33.3	0	16.7	16.7	0	16.7	16.7	0	16.7	0	0	0	0
11°	33.3	0	0	0	0	0	0	0	33.3	16.7	0	0	0	0
12°	16.7	16.7	16.7	16.7	0	0	16.7	16.7	0	0	0	0	0	0
13°	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	۶	F	c	c	E	_	E	-	E	ε	ε	Е	٦	E
P W15	P 100	P 200r	P 300n	P 400n	P 500n	P 600n	P 700n	P 800n	P 900n	P 1000	P 1100	P 1200	P 1300	P 1400
1º	100 L 33.3	B 2001	66.7	66 .7	66.7	4 66.7	66 .7	B 3.3	4 83.3	6001 d 83.3	B3 .3	P 1200 83.3	6061 83.3	B 3.3
1° 2°	33.3 33.3	33.3 33.3	66.7 83.3	66.7 83.3	66.7 83.3	66.7 83.3	66.7 83.3	B 3.3 83.3	83.3 83.3	6001 d 83.3 83.3	83.3 83.3	83.3 83.3	0000000000000000000000000000000000000	83.3 100
1 ° 2° 3°	33.3 33.3 16.7	33.3 33.3 33.3 33.3	66.7 83.3 66.7	66.7 83.3 33.3	66.7 83.3 50.	66.7 83.3 33.3	66.7 83.3 33.3	B 3.3 83.3 33.3	83.3 83.3 66.7	6001 d 83.3 83.3 83.3	83.3 83.3 50	83.3 83.3 83.3	0000000000000000000000000000000000000	83.3 100 50
1° 2° 3° 4°	33.3 33.3 16.7 33.3	33.3 33.3 33.3 33.3 33.3	66.7 83.3 66.7 33.3	66.7 83.3 33.3 50	66.7 83.3 50. 16.7	66.7 83.3 33.3 50	66.7 83.3 33.3 50	83.3 83.3 33.3 66.7	83.3 83.3 66.7 33.3	83.3 83.3 83.3 83.3 16.7	83.3 83.3 50 33.3	83.3 83.3 83.3 83.3 16.,7	83.3 100 50 33.3	83.3 100 50 50
1° 2° 3° 4° 5°	33.3 33.3 16.7 33.3 16.7	bo 33.3 33.3 33.3 33.3 33.3 33.3	66.7 83.3 66.7 33.3 0	66.7 83.3 33.3 50 16.7	66.7 83.3 50. 16.7 33.3	66.7 83.3 33.3 50 16.7	66.7 83.3 33.3 50 33.3	83.3 83.3 33.3 66.7 16.7	83.3 83.3 66.7 33.3 16.7	83.3 83.3 83.3 16.7 0	83.3 83.3 50 33.3 16.7	83.3 83.3 83.3 16.,7 0	83.3 100 50 33.3 16.7	83.3 100 50 50 16.7
1° 2° 3° 4° 5° 6°	33.3 33.3 16.7 33.3 16.7 0	Joo 33.3 33.3 33.3 33.3 33.3 33.3 33.3	66.7 83.3 66.7 33.3 0 0	66.7 83.3 33.3 50 16.7 0	66.7 83.3 50. 16.7 33.3 16.7	66.7 83.3 33.3 50 16.7 0	66.7 83.3 33.3 50 33.3 0	83.3 83.3 33.3 66.7 16.7 0	83.3 83.3 66.7 33.3 16.7 0	83.3 83.3 83.3 16.7 0 16.7	83.3 83.3 50 33.3 16.7 16.7	83.3 83.3 83.3 16.,7 0 16.7	83.3 100 50 33.3 16.7 0	8 3.3 100 50 50 16.7 0
1° 2° 3° 4° 5° 6° 7°	33.3 33.3 16.7 33.3 16.7 0 16.7	10 3 3 3 3 3 3 3 3 3 3	66.7 83.3 66.7 33.3 0 0 16.7	66.7 83.3 33.3 50 16.7 0 0	66.7 83.3 50. 16.7 33.3 16.7 0	66.7 83.3 33.3 50 16.7 0 16.7	66.7 83.3 33.3 50 33.3 0 33.3	83.3 83.3 33.3 66.7 16.7 0 0	83.3 83.3 66.7 33.3 16.7 0 0	83.3 83.3 83.3 16.7 0 16.7 0	83.3 83.3 50 33.3 16.7 16.7 0	83.3 83.3 83.3 16.,7 0 16.7 0	83.3 100 50 33.3 16.7 0 16.7	8 3.3 100 50 16.7 0 0
1° 2° 3° 4° 5° 6° 7° 8°	33.3 33.3 16.7 33.3 16.7 0 16.7 33.3	33.3 33.3 33.3 33.3 33.3 33.3 33.3 16.7 16.7	66.7 83.3 66.7 33.3 0 0 16.7 16.7	66.7 83.3 33.3 50 16.7 0 0 33.3	66.7 83.3 50. 16.7 33.3 16.7 0 16.7	66.7 83.3 33.3 50 16.7 0 16.7 16.7	66.7 83.3 33.3 50 33.3 0 33.3 0 33.3 0	83.3 83.3 33.3 66.7 16.7 0 0 16.7	83.3 83.3 66.7 33.3 16.7 0 0 0	83.3 83.3 83.3 16.7 0 16.7 0 0	83.3 83.3 50 33.3 16.7 16.7 0 0	83.3 83.3 16.7 0 16.7 0 0	83.3 100 50 33.3 16.7 0 16.7 0	8 3.3 100 50 16.7 0 0
1° 2° 3° 4° 5° 6° 7° 8° 9°	33.3 33.3 16.7 33.3 16.7 0 16.7 33.3 0	10 33.3 33.3 33.3 33.3 33.3 33.3 16.7 16.7 16.7	66.7 83.3 66.7 33.3 0 0 16.7 16.7 0	66.7 83.3 33.3 50 16.7 0 33.3 0	66.7 83.3 50. 16.7 33.3 16.7 0 16.7 0	66.7 83.3 33.3 50 16.7 0 16.7 16.7 0	66.7 83.3 33.3 50 33.3 0 33.3 0 33.3 0 0	83.3 83.3 33.3 66.7 16.7 0 0 16.7 0	83.3 83.3 66.7 33.3 16.7 0 0 0 0	83.3 83.3 83.3 16.7 0 16.7 0 0 0	83.3 83.3 50 33.3 16.7 16.7 0 0 0	83.3 83.3 83.3 16.,7 0 16.7 0 16.7	83.3 100 50 33.3 16.7 0 16.7 0 0	83.3 100 50 50 16.7 0 0 0 0
1° 2° 3° 4° 5° 6° 7° 8° 9° 10°	33.3 33.3 16.7 33.3 16.7 0 16.7 33.3 0 66.7	Jo 3 33.3 33.3 33.3 33.3 33.3 16.7 16.7 16.7 50	66.7 83.3 66.7 33.3 0 0 16.7 16.7 0 16.7	66.7 83.3 33.3 50 16.7 0 33.3 0 16.7	66.7 83.3 50. 16.7 33.3 16.7 0 16.7 0 16.7 0	66.7 83.3 33.3 50 16.7 0 16.7 16.7 0 0	66.7 83.3 33.3 50 33.3 0 33.3 0 33.3 0 0 0 0	B 3.3 83.3 33.3 66.7 16.7 0 16.7 0 16.7 0 0	83.3 83.3 66.7 33.3 16.7 0 0 0 0 0	83.3 83.3 83.3 16.7 0 16.7 0 0 16.7	83.3 83.3 50 33.3 16.7 16.7 0 0 0 16.7	83.3 83.3 16.,7 0 16.7 0 16.7 0 16.7 0	83.3 100 50 33.3 16.7 0 16.7 0 0 0	8 3.3 100 50 16.7 0 0 0 0 0
1° 2° 3° 4° 5° 6° 7° 8° 9° 10° 11°	33.3 33.3 16.7 33.3 16.7 0 16.7 33.3 0 66.7 33.3	Jo 33.3 33.3 33.3 33.3 33.3 33.3 16.7 16.7 16.7 50 0	66.7 83.3 66.7 33.3 0 0 16.7 16.7 0 16.7 0	66.7 83.3 33.3 50 16.7 0 33.3 0 16.7 0	66.7 83.3 50. 16.7 33.3 16.7 0 16.7 0 16.7	66.7 83.3 33.3 50 16.7 0 16.7 16.7 0 0 16.7	66.7 83.3 33.3 50 33.3 0 33.3 0 33.3 0 0 0 0 0 0	83.3 83.3 33.3 66.7 16.7 0 16.7 0 16.7 0 0	b 8 8 3 3 3 3 3 3 3 3	83.3 83.3 83.3 16.7 0 16.7 0 0 0 16.7 0 0	83.3 83.3 50 33.3 16.7 16.7 0 0 0 16.7 0	83.3 83.3 16.7 0 16.7 0 16.7 0 16.7 0 0	83.3 100 50 33.3 16.7 0 16.7 0 0 0 0 0	8 3.3 100 50 16.7 0 0 0 0 0 0
1° 2° 3° 4° 5° 6° 7° 8° 9° 10° 11° 12°	33.3 33.3 16.7 33.3 16.7 0 16.7 33.3 0 66.7 33.3 16.7	Jo 33.3 33.3 33.3 33.3 33.3 16.7 16.7 16.7 50 0 0 0	66.7 83.3 66.7 33.3 0 0 16.7 16.7 0 16.7 0 16.7 0	66.7 83.3 33.3 50 16.7 0 33.3 0 16.7 0 16.7 0 0	66.7 83.3 50. 16.7 33.3 16.7 0 16.7 0 16.7 0 16.7 0	66.7 83.3 33.3 50 16.7 0 16.7 16.7 0 16.7 0 16.7 0	66.7 83.3 33.3 50 33.3 0 33.3 0 33.3 0 0 0 0 0 0 0	83.3 83.3 33.3 66.7 16.7 0 0 16.7 0 0 0 0 0 0 0 0	83.3 83.3 66.7 33.3 16.7 0 0 0 0 0 16.7 0	83.3 83.3 83.3 16.7 0 16.7 0 0 16.7 0 0 16.7 0 0	83.3 83.3 50 33.3 16.7 16.7 0 0 0 16.7 0 0 0	83.3 83.3 83.3 16.,7 0 16.7 0 16.7 0 16.7 0 0 16.7 0 0	83.3 100 50 33.3 16.7 0 16.7 0 0 0 0 0 0	8 3.3 100 50 50 16.7 0 0 0 0 0 0 0 0 0 0
1° 2° 3° 4° 5° 6° 7° 8° 9° 10° 11° 12° 13°	33.3 33.3 16.7 33.3 16.7 0 16.7 33.3 0 66.7 33.3 16.7 0	Jo 33.3 33.3 33.3 33.3 33.3 16.7 16.7 16.7 50 0 0 0 0 0	66.7 83.3 66.7 33.3 0 0 16.7 16.7 0 16.7 0 16.7 0 0 0	66.7 83.3 33.3 50 16.7 0 33.3 0 16.7 0 0 16.7 0 0 0	66.7 83.3 50. 16.7 33.3 16.7 0 16.7 0 16.7 0 16.7 0 0	66.7 83.3 33.3 50 16.7 0 16.7 0 16.7 0 16.7 0 16.7 0 0	66.7 83.3 33.3 50 33.3 0 33.3 0 33.3 0 0 0 0 0 0 0 0 0 0	83.3 83.3 33.3 66.7 16.7 0 0 16.7 0 0 0 0 0 0 0 0 0	b 8 8 3 3 3 3 3 3 3 3	83.3 83.3 83.3 16.7 0 16.7 0 0 16.7 0 0 0 16.7 0 0 0	83.3 83.3 50 33.3 16.7 16.7 0 0 16.7 0 0 16.7 0 0	83.3 83.3 83.3 16.,7 0 16.7 0 16.7 0 16.7 0 0 16.7 0 0 0 0	83.3 100 50 33.3 16.7 0 16.7 0 0 0 0 0 0 0 0	8 3.3 100 50 50 16.7 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. Probability (%) of winning a medal for athletes in each position in 1500-m finals

520

519

- 522
- 523

ROSPT M1500	0-100m	100-200m	200-300m	300-400m	400-500m	500-600m	600-700m	700-800m	800-900m	900-1000m	1000-1100m	1100-1200m	1200-1300m	1300-1400m	1400-1500m
1	66.7	83.3	33.3	16.7	33.3	33.3	33.3	33.3	33.3	66.7	50	33.3	66.7	66.7	66.7
2	16.7	33.3	33.3	66.7	50	66.7	16.7	33.3	33.3	16.7	66.7	33.3	16.7	83.3	50
3	33.3	167	33.3	50	66.7	16.7	33.3	83.3	33.3	33.3	16.7	16.7	50	33.3	50
4	33.3	33.3	16.7	16.7	16.7	33.3	16.7	33.3	66.7	33.3	50	83.3	50	16.7	33.3
5	0	16.7	66.7	0	0	33.3	16.7	16.7	16.7	33.3	16.7	50	33.3	33.3	50
6	16.7	33.3	16.7	33.3	16.7	16.7	33.3	0	16.7	33.3	16.7	33.3	33.3	16.7	16.7
7	16.7	16.7	16.7	16.7	33.3	33.3	33.3	0	16.7	16.7	16.7	16.7	16.7	50	16.7
8	33.3	16.7	16.7	33.3	0	33.3	33.3	33.3	33.3	0	50	16.7	0	0	0
9	0	0	16.7	33.3	16.7	16.7	33.3	16.7	33.3	33.3	16.7	16.7	0	0	16.7
10	33.3	16.7	16.7	0	16.7	0	16.7	16.7	16.7	16.7	0	0	33.3	0	0
11	33.3	33.3	33.3	16.7	16.7	16.7	33.3	16.7	0	16.7	0	0	0	0	0
12	16.7	0	0	16.7	33.3	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	16.7	0	0	0	0	0	0	0
ROSPT W1500	0-100m	100-200m	200-300m	300-400m	400-500m	500-600m	600-700m	700-800m	800-900m	900-1000m	1000-1100m	1100-1200m	1200-1300m	1300-1400m	1400-1500m
L ROSPT W1500	E 001-0 33.3	100-200m	00-300	300-400m	400-500m 33.3	W009-005 83.3	w002-009 16.7	w008-00	W006-008 33.3	W0001-006 66.7	1000-1100m	1100-1200m	1200-1300m 83.3	1300-1400m	1400-1500m
1 2	E007-0 33.3 33.3	00-500 50 33.3	000-007 50 83.3	00700 50 66.7	400-2000 33.3 16.7	w009-005 83.3 33.3	W002-009 16.7 16.7	W008-00 66.7 66.7	W006-008 33.3 50	40001-006 66.7	5 0 33.3	4007-0011 83.3 66.7	1200-1300 83.3 83.3	1300-1400m 100	1400-1500m 33.3 66.7
LdSON 1 2 3	E001-0 33.3 33.3 16.7	4007-001 50 33.3 50	5 0 50 83.3 50	50 66.7 16.7	4005-004 33.3 16.7 50	4009-005 83.3 33.3 50	4002-009 16.7 16.7 33.3	4000 00 1 66.7 66.7 33.3	E006-00 33.3 50 33.3	66.7 66.7 66.7	50 50 50	W0071-0011 83.3 66.7 83.3	1300.1 83.3 83.3 50	1300-1400m 100 100	1400-1500m 33.3 66.7 83.3
1 2 3 4	5 33.3 33.3 16.7 33.3	50 50 33.3 50 50	5 0 83.3 50 16.7	50 66.7 16.7 50	4009-004 33.3 16.7 50 33.3	609-009 83.3 33.3 50 50	E 02-009 16.7 16.7 33.3 66.7	66.7 66.7 33.3 16.7	E 000 000 33.3 50 33.3 33.3	66.7 100 66.7 33.3	50 50 50 50 50	83.3 66.7 83.3 33.3	83.3 83.3 50 33.3	100 100 50 0	0000000000000000000000000000000000000
1 2 3 4 5	33.3 33.3 16.7 33.3 16.7	50 33.3 50 50 33.3	50 83.3 50 16.7 16.7	50 66.7 16.7 50 33.3	4009-007 33.3 16.7 50 33.3 50	83.3 33.3 50 50 16.7	16.7 16.7 33.3 66.7 33.3	66.7 66.7 33.3 16.7 33.3	400,000 33.3 50 33.3 33.3 33.3	66.7 100 66.7 33.3 0	50 50 50 50 50 0	E007:001 83.3 66.7 83.3 33.3 0	E00: 83.3 83.3 50 33.3 50	100 100 50 50	E009 33.3 66.7 83.3 0 33.3
LdSON 1 2 3 4 5 6	5 33.3 33.3 16.7 33.3 16.7 0	50 33.3 50 33.3 30 33.3 0	50 83.3 50 16.7 16.7	50 66.7 16.7 33.3 0	4005-004 333.3 16.7 50 33.3 50 50	83.3 33.3 50 16.7 16.7	L002-009 16.7 16.7 33.3 66.7 33.3 16.7	E000-001 66.7 33.3 16.7 33.3 50	E006-002 33.3 50 33.3 33.3 33.3 66.7	66.7 100 66.7 33.3 0 16.7	50 50 33.3 50 0 0	83.3 66.7 83.3 33.3 0 33.3	E002 83.3 83.3 50 33.3 50 0	100 100 50 50 0	66.7 33.3 0 33.3 0
LdSO2 1 2 3 4 5 6 7	5 33.3 33.3 16.7 33.3 16.7 0 16.7	50 33.3 50 33.3 50 33.3 0 16.7	50 83.3 50 16.7 16.7 16.7 0	50 66.7 16.7 33.3 0 16.7	5 0 33.3 16.7 33.3 50 50 16.7	83.3 33.3 50 50 16.7 16.7 33.3	LEOD 16.7 16.7 33.3 66.7 33.3 16.7 50	66.7 66.7 33.3 16.7 33.3 50 0	L 00 00 00 33.3 33.3 33.3 66.7 16.7	E0001-006 66.7 100 66.7 33.3 0 16.7 0	LIGO 17:0001 50 33.3 50 0 0 50 50	E007 B3.3 66.7 B3.3 33.3 0 33.3 0 33.3 0	E002 83.3 83.3 50 33.3 50 0 0	100 100 0 50 0 0 0 0 0 0 0 0	E005-004 33.3 66.7 83.3 0 33.3 0 33.3
LdSON 1 2 3 4 5 6 7 8	33.3 33.3 16.7 33.3 16.7 0 16.7 33.3	5 0 33.3 50 33.3 0 16.7 16.7	50 83.3 50 16.7 16.7 16.7 0 0	50 66.7 16.7 50 33.3 0 16.7 0	50 33.3 16.7 50 33.3 50 50 16.7 0	83.3 33.3 50 50 16.7 16.7 33.3 0	LEOC-009 16.7 16.7 33.3 66.7 33.3 16.7 50 0	66.7 66.7 33.3 16.7 33.3 50 0 0	E 33.3 50 33.3 33.3 33.3 66.7 16.7 16.7	E0001-006 66.7 100 66.7 33.3 0 16.7 0 0	50 33.3 50 0 0 50 16.7	E007 ;0012 83.3 66.7 83.3 33.3 0 33.3 0 33.3 0 0 0	E00: 83.3 83.3 50 33.3 50 0 0 0	100 100 50 0 50 0 0 0 0 0 0	E009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 100 1009 100 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 100100100 1001001001001
LdSO2 1 2 3 4 5 6 7 8 9	5 33.3 33.3 16.7 33.3 16.7 0 16.7 33.3 0	50 33.3 50 33.3 0 16.7 16.7 0	5 0 83.3 50 16.7 16.7 16.7 0 0 0	50 66.7 16.7 33.3 0 16.7 0 16.7	u 33.3 16.7 50 33.3 50 50 16.7 0 16.7	B 3.3 33.3 50 50 16.7 16.7 33.3 0 0	LEO 16.7 16.7 33.3 66.7 33.3 16.7 50 0 33.3	4 66.7 66.7 33.3 16.7 33.3 50 0 0 0	L 000,000 33.3 50 33.3 33.3 66.7 16.7 16.7 0	E00000 66.7 100 66.7 33.3 0 16.7 0 0 16.7	50 33.3 50 0 0 50 16.7 16.7	1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007	E00: 83.3 83.3 50 33.3 50 0 0 0 0 0	LIOO 1000 500 0 500 0 0 0 0 0 0 0	500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 1
LdSO2 1 2 3 4 5 6 7 8 9 10	5 33.3 33.3 16.7 33.3 16.7 0 16.7 33.3 0 66.7	5 0 33.3 50 50 33.3 0 16.7 16.7 0 33.3	5 0 83.3 50 16.7 16.7 16.7 0 0 0 16,7	50 66.7 16.7 50 33.3 0 16.7 0 16.7 33.3	b 3 3 3 5 0 1 6 7 0 1 6 7 0 1 6 7 3 3 3 3 3 5 0 1 6 7 5 1 1 6 7 5 1 1 1 1 1 1 1 1 1 1	83.3 33.3 50 50 16.7 16.7 33.3 0 0 0	L 16.7 16.7 33.3 66.7 33.3 16.7 50 0 33.3 33.3 33.3	66.7 66.7 33.3 16.7 33.3 50 0 0 0 16.7	L 33.3 50 33.3 33.3 66.7 16.7 16.7 0 0	E000-006 66.7 100 66.7 33.3 0 16.7 0 0 16.7 0	E001-000 50 33.3 50 0 0 50 16.7 16.7 16.7	5000000000000000000000000000000000000	E002 83.3 83.3 50 33.3 50 0 0 0 0 0 0 0	100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E005-004 33.3 66.7 83.3 0 33.3 0 33.3 0 33.3 0 16.7 33.3
LdSOY 1 2 3 4 5 6 7 8 9 10 11	E 33.3 33.3 16.7 33.3 16.7 0 16.7 33.3 0 66.7 33.3	50 33.3 50 50 33.3 0 16.7 16.7 0 33.3 16.7	50 83.3 50 16.7 16.7 16.7 0 0 0 16,7 16,7	50 66.7 16.7 50 33.3 0 16.7 33.3 16.7 33.3	by , 64 33.3 16.7 50 33.3 50 16.7 0 16.7 33.3 0	83.3 33.3 50 50 16.7 16.7 33.3 0 0 0 16.7	L 16 .7 16 .7 33 .3 66 .7 33 .3 16 .7 50 0 33 .3 33 .3 0	66.7 66.7 33.3 16.7 33.3 50 0 0 0 16.7 0	E 33.3 50 33.3 33.3 33.3 66.7 16.7 16.7 0 0 16.7	E0001-006 66.7 100 66.7 33.3 0 16.7 0 0 16.7 0 0	E001-000 50 33.3 50 0 0 50 16.7 16.7 16.7 16.7	E007 83.3 66.7 83.3 33.3 0 33.3 0 0 0 0 0 0 0 0 0 0	E00: 83.3 83.3 50 33.3 50 0 0 0 0 0 0 0 0 0 0 0 0 0	HU00 100 100 50 0 0 0 0 0 0 0 0 0 0 0 0	E09: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100: 100:
LdSO2 1 2 3 4 5 6 7 8 9 10 11 12	5 33.3 33.3 16.7 33.3 16.7 0 16.7 33.3 0 66.7 33.3 16.7	50 33.3 50 33.3 0 16.7 16.7 0 33.3 16.7 0	5 0 83.3 50 16.7 16.7 16.7 0 0 16,7 16,7 33,3	50 66.7 16.7 50 33.3 0 16.7 0 16.7 33.3 16.7 0	Log 33.3 16.7 50 33.3 50 50 16.7 0 16.7 33.3 0 0 0	B 3.3 33.3 50 50 16.7 16.7 33.3 0 0 0 16.7 0	L 6.7 16.7 33.3 66.7 33.3 16.7 50 0 33.3 33.3 0 0 0	Log 66.7 66.7 33.3 16.7 33.3 50 0 0 16.7 0 16.7	Loop 33.3 50 33.3 33.3 66.7 16.7 16.7 0 0 16.7 0	E007-00 66.7 100 66.7 33.3 0 16.7 0 0 16.7 0 0 16.7 0 0	LIGO 12:00 50 33.3 50 0 0 50 16.7 16.7 16.7 16.7 16.7 0	1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007	E00: 83.3 83.3 50 33.3 50 0 0 0 0 0 0 0 0 0 0 0 0 0	LIOO 100 50 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 5

Table 4. Probability (%) of winning a medal for each ROSPT in 1500-m finals

524

ROSPT, Rank order section time; M1500, Men's 1500-m; W1500, Women's 1500-m.

525

Figure 1: Mean race speed relative to SSB (%) in M and T8 groups in 800-m finals and P, T8 and T12 groups in 1500-m finals. Differences between groups are represented by * (p < 0.05). SSB, Season best speed; M, Medallists; T8, Top 8; T12, Top 12.

125x162mm (300 x 300 DPI)

Figure 2: Mean section speeds relative to SSB (%) in M, T8 and T12 groups of 800-m and 1500-m finals. Differences between groups (p < 0.05) are represented by * (M vs T8), # (M vs T12) and † (T8 vs T12) in the corresponding section. A double symbol represents differences with p < 0.01. SSB, Season best speed; M, Medallists; T8, Top 8, T12, Top 12.

1905x1457mm (38 x 38 DPI)

Figure 3: Mean intermediate positions of athletes finishing in each available position in 800-m and 1500-m races.

1005x709mm (72 x 72 DPI)

Figure 4: Mean intermediate positions of M, T8 and T12 groups in 800-m and 1500-m finals. Differences between groups (p < 0.05) are represented by * (M vs T8), # (M vs T12) and † (T8 vs T12) in the corresponding section. A double symbol represents differences with p < 0.01. M, Medallists; T8, Top 8, T12, Top 12.

1005x642mm (72 x 72 DPI)