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Elastic Collisions on a Simulated Circular Air Track 
 

C. B. Price, Department of Computing, University of Worcester WR1 3AS, United Kingdom. 
(corresponding author) c.price@worc.ac.uk  ORCID 0000 0002 2173 9897 

M. L. Pethybridge, Prince Henry’s High School, Evesham, WR11 4QH, United Kingdom. 

 

Editor’s Note:  Students in introductory courses often analyze one-dimensional elastic collisions between carts 
on wheels or gliders on an air track.  If the track possesses end stops, and the system is left undisturbed after 
the initial contact, multiple collisions will occur.  The analysis of repeated collisions can be somewhat 
complicated due to the end-stop reflections.  In this article, the authors consider a clever simplification involving 
a circular track without end-stops.  This renders the mathematical analysis more tractable for students, and the 
system presents a variety of interesting behaviors to explore.  Students and instructors will enjoy this 
entertaining application of linear algebra and can freely make use of online computer simulations provided as 
supplementary material.  

 

Abstract 

Elastic collisions of gliders on linear air tracks are often used to explore conservation of energy and momentum. 

If one is interested in the glider behavior over a long time span, the analysis involves repeated collisions and is 

complicated by reflections from the track end-stops. Here we analyze elastic collisions on a novel circular air 

track; since such a track lacks end-stops, the mathematical analysis of repeated collisions is amenable to our 

students. Our analysis uncovers a variety of interesting behaviors which depend on the ratio of the glider masses. 

We examine periodic sequences where the gliders return to their initial conditions and progressions where 

(when plotted in polar coordinates), the collision positions take on the locus of a spiral. One set of initial 

conditions produces an ‘angle trap’ where one glider remains within a certain angular range. We also explore 

making one glider’s mass hypothetically negative which results in a novel ‘chasing’ motion. Our results were 

obtained using a 3D interactive simulation (created using C++ within the Unreal engine) which we make available 

as supplementary material. 

I. INTRODUCTION 
 

 In high school and college physics classes, linear air tracks are often used in lecture 

demonstrations or in laboratory exercises1,2. A typical configuration is shown in Fig.1(a) where two 

gliders (equipped with elastic or magnetic bumpers) can collide with each other and with end stops. 

Experiments usually focus on a single glider-glider collision to demonstrate momentum (and 

sometimes energy) conservation. If the gliders are left untouched following this initial collision, they 

rebound from the end stops and then experience further glider-glider and glider-end stop collisions. 
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The ensuing motion is complex, yet anyone who has performed this experiment may have noted 

something quite magical: if one glider starts at rest, then at some time in the future (after multiple 

collisions), it will come to rest again. This complex situation has already been analyzed; a matrix 

description3 explains many observed regularities. Despite its elegance, such an analysis may be 

beyond what is expected of most students, so we propose a simplified arrangement. 

 In this paper, we present a novel approach which avoids complexities resulting from the end 

stops; we theoretically analyze elastic collisions on a circular air track where gliders can only collide 

with each other, Fig.1(b). We are not aware of any existing complete experimental apparatus, though a 

promising partial apparatus exists: the circular magnetic levitation track4 using high-temperature 

superconductors. Due to the absence of a physical device, we created a computer simulation to 

investigate phenomena that a future experimental setup may exhibit. Our simulation framework, 

written in C++, numerically solves the differential equations of motion of two interacting gliders using 

a standard adaptive time-step approach5. The framework makes use of the Unreal video game engine6 

for an enhanced user experience, and for 3D visualization. Our simulator is provided as supplementary 

material; we also include user instructions, some guided and open-ended investigations7, as well as 

details of the underlying mathematics. 

It is important to understand our use of the simulation framework in the context of this paper, 

which focuses on analytical results. Our initial simulation investigations, which serve as a substitute 

for physical experimentation, led to some novel observations; this prompted the theoretical analysis 

presented in Sections II, III and IV. Figs. 3,5 and 6 are outputs of the simulation framework. The 

parameters of our model are the mass ratio 𝜇 = 𝑚2 𝑚1⁄  and the gliders’ pre-collision velocities 𝑣1 and 

𝑣2. For simplicity, we investigated situations with 𝑣2 = 0.  Our observations were as follows: 

1. Following the initial collision, 𝑚2 returned to rest after each even-numbered collision. 

2. The speeds of 𝑚1 and 𝑚2 after each odd-numbered collision depended on the value of 𝜇. 

3. For specific values of 𝜇, 𝑚2 was found to be at rest at its initial location on the air-track after 

a certain number of collisions.  For example, with 𝜇 = 3, after 4 collisions and 1 complete 

revolution around the track, the gliders returned to their initial locations and initial velocities.  

 

 The first result, although not observable on a linear air-track, is expected by the conservation of 

momentum, where the glider velocity difference is reversed after each collision. The second result 

makes intuitive sense based on experience working with a linear air-track. We found the third point 

surprising and intriguing, and it was this novel observation that led to the present analysis, and resulted 

in an investigation of the conditions necessary to produce this behavior.  
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II. THEORETICAL MODEL 
 

In this section, we develop a theoretical model for elastic collisions on a circular air track. It is 

convenient to represent the linear velocities of the masses as a vector. It is straightforward to write the 

textbook1 result relating the velocities following the i-th and the (i+1)th collisions as a matrix equation 

[
𝑣1

𝑣2
]

(𝑖+1)

= 𝑨 [
𝑣1

𝑣2
]

(𝑖)

, (1) 

where the matrix 𝑨 is 

𝑨 =
1

1 + 𝜇
[
(1 − 𝜇) 2𝜇

2 −(1 − 𝜇)
] . (2) 

 This matrix has interesting properties; for example, its square is the identity matrix 

𝑨2 = 𝑰, (3) 

so that after two collisions, the gliders recover their original velocities.  This means that the gliders will 

always show a ‘period-2’ behavior, where they alternate between velocities [𝑣1, 𝑣2] and 𝑨 [𝑣1, 𝑣2].   Of 

course, this periodicity is an essential property of elastic collisions. 

The time 𝑇 between subsequent collisions is constant. This important result follows from 

momentum and kinetic energy conservation. Imagine sitting on mass 2, then we see mass 1 moving 

with velocity 𝑣1 − 𝑣2 the magnitude of which is invariant in one-dimensional elastic collisions. If we 

assume the circular track has radius 𝑅, the time interval between all successive collisions is therefore 

given by 

Fig. 1. (a) The linear air track is shown.  The end stops reverse the gliders’ velocity upon contact. (b) A 
schematic of a continuous circular air track without end stops. 
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𝑇 =  
2𝜋𝑅

|𝑣1 − 𝑣2|
. (4) 

In what follows, we assume 𝑚2 starts at rest (Fig. 2a), and we further assume 𝜇 > 1 so the 

lighter mass is the one which is initially moving.  Under these conditions, the masses move in 

opposite directions after the first collision (Fig. 2b).  Finally, 𝑚2 returns to rest after the second 

collision (Fig. 2c). This sequence then repeats, which is a great simplification over the linear air track 

behavior. For simplicity, we denote 𝑚1’s initial speed as 𝑣, then from Eq. (2) we have the following 

expressions for subsequent velocities 

[
𝑣1

𝑣2
]

(2𝑖)

= [
𝑣
0

]                   [
𝑣1

𝑣2
]

(2𝑖+1)

=
1

1 + 𝜇
  [

(1 − 𝜇)
2

] 𝑣. (5)           

From Eq. (5) it can be deduced that, for 𝜇 < 3, mass 2 emerges with a larger speed than mass 1. For 

𝜇 = 3 both masses emerge with the same speed, and for 𝜇 > 3 mass 1 emerges with a larger speed.  

Theoretical results derived for this special case may be generalized to the situation of 𝑣2 ≠ 0 by a 

simple change of reference frame. 

III. RETURN TO THE INITIAL CONDITIONS 
 

In our simulations, we observed behavior which surprised and intrigued us: for certain values of 

𝜇, the gliders returned to their initial conditions (often after multiple collisions and several revolutions 

around the air track). In this section, we obtain expressions for those values 𝜇 which lead to this 

Fig. 2. Collision stages when the lighter, initially moving mass 1 collides with a heavier, 
initially stationary mass 2: (a) Mass 1 approaches mass 2. (b) Mass 1 reverses direction, 
mass 2 is propelled forward after the collision. (c) Following the second collision mass 2 
is at rest, and its angular displacement is indicated. 
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behavior, the angles covered between collisions, and the number of collisions and revolutions around 

the air track before the initial state is recovered.  

First, from Fig.2 (c) we have  

𝜃2
(2)

= 𝜃2
(1)

+ 2πW (6) 

where 𝑊 is the winding number-the fraction of the circle traversed by 𝑚2 prior to the second collision. 

Since 𝑚2 travels with velocity 𝑣2
(1) following its first collision, it traverses an angle Δ𝜃2 = 𝑣2

(1)
𝑇 𝑅⁄  until 

its second collision.  Using Eq. (4) in the special case of 𝑣1 = 𝑣 and  𝑣2 = 0, we have 𝑇/𝑅 = 2 𝜋/𝑣 

and so, when it is moving, mass 2 will always cover an angle between collisions 

Δ𝜃2 =  2πW = 2π (
2

1 + 𝜇
) . (7) 

Assuming 𝜃2 = 0, initially, and repeating this n times, we find the angular position of 𝑚2 after 2𝑛 

collisions (𝑛 = 1,2,3 … ) is 

𝜃2
(2𝑛)

= 2𝜋𝑊𝑛. (8) 

According to (8), mass 2 will be found at rest at its original position after 2𝑛 collisions if the 

combination 𝑊𝑛 is an integer.  Let us assume  𝑊 is rational so we can write 𝑊 = 𝑝 𝑞⁄ , (where 𝑝 and 𝑞 

are positive integers) as a fraction in its lowest terms. Then, the first time 𝑊𝑛 equals an integer is when 

𝑛 = 𝑞 (after 2𝑞 collisions). At this point in time, we have 

𝜃2
(2𝑞)

= 2𝜋
𝑝𝑞

𝑞
= 2𝜋𝑝, (9) 

which tells us that 𝑚2 has made 𝑝 revolutions around the track. The key result is that the masses will 

return to their original configuration when 𝑊 is rational and the mass ratio 𝜇 satisfies  

𝑝

𝑞
= (

2

1 + 𝜇
) . (10) 

Some examples showing the number of collisions and revolutions prior to recovery of the initial 

conditions are given in Table 1.  Note that 𝜇 does not necessarily need to be a whole number for this to 

occur.  Additional values of 𝜇 which lead to a recovery of the initial conditions are given in Appendix A.  
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𝜇 1 5/3 2 3 5 7 
𝑝

𝑞
= (

2

1 + 𝜇
) 1/1 3/4 2/3 1/2 1/3 1/4 

∆𝜃2 360o 270o 240o 180o 120o 90o 
𝑁𝐶  (= 2𝑞) 2 8 6 4 6 8 
𝑁𝑅 (= 𝑝) 1 3 2 1 1 1 

𝑣1 𝑣⁄  0 -1/4 -1/3 -1/2 -2/3 -3/4 
𝑣2 𝑣⁄  1 3/4 2/3 1/2 1/3 1/4 

 

Table 1. Examples of collision behavior for various values of 
𝜇 which cause the masses to eventually recover their initial 
conditions.  𝑁𝐶  is the total number of collisions before mass 2 
is found at rest at its original position, and 𝑁𝑅  is the number of 
revolutions before this occurs. We also give the velocities of 
the masses when they emerge from odd-numbered collisions 
as a fraction of 𝑚1’s initial velocity.  

 

Our simulation framework can be used to help visualize such collision sequences.  Some 

example plots are shown in Fig. 3. The Octave scripts used to draw the plots are automatically 

generated by the simulation framework.  

Fig. 3. Polar plots showing glider trajectories, where the angle is shown in degrees, and time 
(plot radius in seconds) is increasing radially outwards.  This example was made with 𝜇 = 3; other 
parameters were chosen so that the time between collisions was approximately 1.0s, and we set 

𝜃2
(0)

= 30o to make the visualizations clearer.  The first four collisions are labelled. (a) The trajectory 
of 𝑚2 showing that it returns to rest at its original location after 4 collisions. (b) The corresponding 
mass-1 trajectory.    
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IV. ADDITIONAL NOVEL BEHAVIOR 
 

 Having explained the intriguing ‘recovery of initial conditions’ phenomenon, we now examine 

whether our theoretical model can predict other interesting behaviors, some of which we observed in 

our simulations. 

A. Angular Traps  

 The two eigenvalues of matrix 𝑨 are +1 and −1.  The negative eigenvalue with associated 

eigenvector 

[
𝑣1

𝑣2
] = [

−𝜇
1

] (11) 

suggests an interesting special casei, where we find that 

𝑨 [
−𝜇
1

] = [
𝜇

−1
] (12) 

so that the velocities are reversed (not interchanged) on each collision. It is straightforward to 

calculate the angles of collision, the situation is shown in Fig. 4. 

 

 
i The positive eigenvalue corresponds to the trivial situation; its associated eigenvector indicates that both masses have 
the same velocity and hence no collision occurs. 
 

Fig. 4. An example collision for the special case of Sec. IV-A where the velocities are reversed 
upon collision. (a) Initial conditions. (b) Location at the subsequent collision. (c) Following the 
collision, the velocities are reversed. 
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Consider an example where mass-2 has initial velocity 𝑣2 = 𝑣 and mass-1 has initial velocity 𝑣1 = −𝜇𝑣   

and assume that the collision happens after mass-2 has moved through an angle Δ𝜃2. Substituting 

these values into Eq. (4) gives the time between successive collisions 

𝑇 =
2𝜋𝑅

𝑣(1 + 𝜇)
(13) 

and therefore, since here 𝑣2 = 𝑣 

Δ𝜃2 =
2𝜋

1 + 𝜇
. (14) 

After the collision, 𝑣2 = −𝑣 so Δ𝜃2 is inverted and 𝑚2 returns to its original position. Mass 2 oscillates 

between its original position and Δ𝜃2 given by the above expression. Eqs. (13) and (14) show that the 

period of the collisions and the angular displacement of 𝑚2, are both inversely proportional to 1 + 𝜇. 

These examples suggest an ‘angle trap’ where the faster moving 𝑚1 constrains 𝑚2 to remain within a 

certain angular range. Eq. (14) can be used to calculate 𝜇 for a desired trap angle.  Fig.5 shows the 

trajectory of 𝑚2 in two such simulation examples. 

  

B. The case of ‘long’ trajectories 

The examples shown in Table 1 and Fig. 3 describe ‘short’ trajectories where return to the initial 

conditions occurs after a relatively small number of collisions and revolutions. Now we consider ‘long’ 

trajectories which evolve through a much larger number of collisions and revolutions before returning 

Fig. 5. Simulated trajectories of 𝑚2 where the initial velocities are 𝑣1 = −𝜇 m/s and 𝑣2 =

1 m/s.  Angles are in degrees and time (curve radius) in seconds. Note that we 
introduced an initial offset between the masses to avoid a computational singularity. (a) 
The case with 𝜇 = 3 constrains 𝑚2 to the range 0 ≤ 𝜃 ≤ 𝜋/2. (b) The case of 𝜇 = 5 
constrains 𝑚2 to the range 0 ≤ 𝜃 ≤ 𝜋/3.  
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to the initial conditions. To understand these let’s start with 𝜇 for a ‘short’ trajectory, e.g, 𝜇 = 5 , and 

increase it by a small amount to 5.1. The resulting trajectory will have  𝑝/𝑞 = 20 61⁄   which corresponds 

to 61 pairs of collisions over 20 revolutions, a ‘long’ trajectory.  Thus, a ‘long’ trajectory can be obtained 

through a slight perturbation of a ‘short trajectory’ mass ratio.   

We can explore this mathematically as follows.  The winding number for our original ‘short 

trajectory’ expression (with 𝜇 = 5.0) is 

𝑊 = (
2

1 + 𝜇
) . (15) 

A ‘long trajectory’ can be found by introducing a slightly different mass ratio 𝜇′ = 𝜇 + 𝛼 where 𝛼 is a 

small nudge to 𝜇, (here  𝛼 = 0.1),  

𝑊′ = (
2

1 + 𝜇′
) = (

2

1 + 𝜇 + 𝛼
) = (

2

1 + 𝜇
) (1 +

𝛼

1 + 𝜇
)

−1

. (16) 

Assuming that 𝛼 ≪ (1 + 𝜇), expanding the rightmost term as a series, and ignoring higher powers, we 

find the difference in winding numbers is 

𝑊 − 𝑊′ =
2𝛼

(1 + 𝜇)2
. (17) 

Now that’s interesting, since it’s proportional to 𝛼 which defines a constant retard (or advance) of the 

collision angle relative to the angle of the original with 𝜇 = 5.0 . This advance or retard will occur for all 

subsequent collisions as shown in Fig. 6. 

 

Fig. 6. Simulated trajectory of 𝑚2 for 𝜇 = 5.1 overlain with points indicating the 
theoretical rest angles from Eq. (B3). Angles are in degrees and time (curve radius) 
in seconds.  A similar plot made with 𝜇 = 5.0 would show three radial lines of 
points separated by 120∘ from each other.   
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The ‘long trajectories’ provide an opportunity to plot the motion over many collisions and 

revolutions.  Such plots (like the one in Fig. 6) suggest that the loci of positions where 𝑚2 returns to rest 

form a spiral. As shown in Appendix B, this is indeed an Archimedean spiral, where the radius of each 

point on the spiral is proportional to its angle.   The Archimedean spiral is evident when the ‘long 

trajectory’ data is plotted as in Fig. 6, but it is in fact a general feature of all trajectories (short, or long).  

In Appendix B, we show that the loci of positions where 𝑚2 returns to rest lie on an Archimedean spiral 

regardless of the mass ratio. 

C. The Case of Negative Mass 

 Hypothetical situations challenge our students’ conceptual understanding and provide learning 

opportunities. One such situation involves hypothetically allowing 𝑚2 to be negative and exploring the 

consequences. It may seem at first strange to entertain the concept of negative mass, but there are 

precedents e.g., in semiconductor band theory where electrons can have negative mass8,9. Negative 

mass forms a part of the ‘dynamic-equivalence approach’ to gravitational systems10 and can be 

engineered in quantum systems11. 

The analysis of hypothetical situations involving negative mass can be surprising and 

interesting.  Simulations where 𝑚2 is negative follow the pattern shown in Fig. 7. Following the collision 

between a moving 𝑚1 and a stationary 𝑚2, both gliders emerge with a negative velocity, with 𝑚1 moving 

faster than 𝑚2.  This is because during the collision, both masses experience forces in opposite 

direction of their approach velocities, but since 𝑚2 < 0, it accelerates in the opposite direction to the 

force experienced.  This behavior can be understood analytically as follows. 

 

 

Fig. 7. (a) The moving mass 1 approaches a stationary mass 2 whose mass is negative. (b) Following 

the collision, both masses move in the same direction. This behavior can be compared with the 

positive mass situation shown in Fig. 2. 
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Consider the situation where 𝜇 < 0, in this case we have 𝜇 =  −|𝜇|.  The square of the matrix 𝑨 

is the identity matrix (regardless of the sign of 𝜇), so period-2 collisions in time will still be obtained. The 

expressions for the velocities after a collision with a stationary 𝑚2 are 

[
𝑣1

𝑣2
]

(2𝑖+1)

= −
1

|𝜇| − 1
  [

(1 + |𝜇|)
2

] 𝑣. (18)           

Unlike in Eq. (5), we see that here both masses move in the same direction. If the masses are to 

separate, then following the collision we must have |𝑣1| > |𝑣2| which from Eq. (18) implies that  |𝜇| >

1, and both velocities are negative (we define 𝑚1 to have positive velocity before the collision): Mass 1 

‘chases’ mass 2. Since both masses are moving in the same direction, they can cover a larger angular 

distance than if 𝑚2 > 0, e.g., for 𝜇 = −2, 𝑚2 covers 720o before it returns to rest. 

 For |𝜇| > 3 both gliders are moving faster than glider 1 on its approach, which at first sight seems 

to violate conservation of energy. However, the analysis of energy must be treated with care; since 

𝑚2 < 0, its kinetic energy is actually negative.ii  

Negative mass has been discussed in the context of the gravitational force before12, but we hope 

that inserting a negative mass into an elastic collision provides readers an opportunity to engage with 

this non-intuitive and challenging concept. 

V. CONCLUSIONS 
 

Compared with a linear air track, a circular air track simplifies the kinematics of multiple glider 

collisions by avoiding complications associated with end-stop reflections. We have shown that this 

system presents a rich variety of behavior.   Using matrix algebra, we have presented some closed-form 

solutions, which could be valuable in high-school or college classrooms and laboratories.  

The code and assets for our Unreal engine simulation are freely available as supplementary 

material7. Ultimately, to perform actual laboratory experiments, physical circular air tracks, or some 

equivalent apparatus, must be developed. We hope that material presented in this paper will inspire 

 
ii As an example, consider the situation for  𝜇 = −2 and, as usual 𝑚2 is initially at rest.  Following the first collision, 
the gliders emerge with velocities 𝑣1 = −3𝑣 and 𝑣2 = −2𝑣.  It is straightforward to verify that both momentum 
and energy are conserved by substitution in expressions for momentum and energy before and after the 
collision. 
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researchers and equipment manufacturers to develop such a laboratory kit. In the meantime, we hope 

that our computer simulations will be valuable to educators. 

SUPPLEMENTARY MATERIAL 
Please click on this link to access the supplementary material, which includes our simulation 

code along with user instructions. Print readers can see the supplementary material at [DOI to be 

inserted by AIPP]. 

ACKNOWLEDGEMENTS 
 The authors would like to thank Will Osborne for some insightful discussions and Andrew 

Robinson for production graphics. We would also thank the two expert reviewers whose detailed 

comments have led to substantial improvements of the initial manuscript. 

 

APPENDIX A: SOME VALUES OF 𝜇 RESULTING IN RATIONAL 𝑊 
 

 q 1 2 3 4 5 6 7 8 9 10 11 
p             
1   3 5 7 9 11 13 15 17 19 21 

2    2 3 4 5 6 7 8 9 10 

3     5/3 7/3  11/3 13/3  17/3 19/3 

4      3/2  5/2  7/2  9/2 

5       7/5 9/5 11/5 13/5  17/5 

6        4/3    8/3 

7         9/7 11/7 13/7 15/7 

8          5/4  7/4 

9           11/9 13/9 

10            6/5 

 
 

APPENDIX B: PROOF OF THE ARCHIMEDEAN SPIRAL 
 

Consider a general mass ratio 𝜇 and start with 𝑚2 at rest 

[
𝑣1

𝑣2
] = [

𝑣
0

] . (𝐵1) 
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Recall that 𝑚2 does not travel at a constant velocity.  As shown in Eq. (5), it actually alternates 

between speeds of 0 and 2𝑣/(1 + 𝜇).  As argued in the text, the time interval between collisions is 

constant, so the mass spends exactly half of its time at rest and half of its time moving.   

Therefore, during a full two-collision time interval, 𝑚2 travels with an average angular velocity 

𝜔𝑎𝑣𝑔 =
𝑣

𝑅(1 + 𝜇)
 , (𝐵2) 

which (because it is only moving half of the time) is half of its angular speed when it is moving.  

Immediately after each even numbered collision, its angular position would be identical to an object 

traveling with a constant angular velocity 𝜔𝑎𝑣𝑔.  Such an object would have an angular position as a 

function of time  

𝜃(𝑡) = 𝜔𝑎𝑣𝑔𝑡 =
𝑣

𝑅(1 + 𝜇)
𝑡. (𝐵3) 

Inverting this relationship, we have 

𝑡(𝜃) = (
𝑅(1 + 𝜇)

𝑣
) 𝜃. (𝐵4) 

A polar plot of this equation (with the radius of the plot being the time 𝑡) is an Archimedian spiral.  

Thus, even though the polar plot of the exact trajectory of 𝑚2 is somewhat complicated (see Fig. 6 for 

an example) the angular positions of the mass 𝑚2 after 2𝑛 collisions lie on an Archimedian spiral. 
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