Propulsion in Wheelchair Basketball

Alison Nagata MSc MCSP
Lead Physiotherapist British Wheelchair Basketball

John Francis MSc
Performance Analyst British Wheelchair Basketball
PhD Student University of Worcester
Wheelchair basketball

- Various disabilities
- Classification is functional
- Classes from 1 to 4.5
- 14 points on the court at one time
- Chair custom to individual player. Height of chair back, straps, dump in chair, wheel position
- Wheels camber (angle) and size
Comparison of Push

1 point versus 4 point player

1 point player
T6 complete

4 point player
Above knee amputee

Rods in thoracic and lumbar
What It Takes To Win (WITTW)

Shooting

Speed and Chair Skills

Defensive Fundamentals | 1st Place | Tactics and Game Sense
2nd Place | 1st Place | Passing and Ball Handling
3rd Place
Speed and Chair Skills

Why is it important?

• Improves relationship with the ball (passing, shooting, rebounding, defending, attacking)

What are we focusing on?

• Initial Hand Position (Ready Phase)
• Optimal Pushing Technique (Push Phase)
• Finishing Hand Position (Push and Recovery Phase)
• Hand Recovery Speed (Recovery Phase)
Optimal Management Of The Paralympic Shoulder

Ready Phase

Optimal Management Of The Paralympic Shoulder

Push Phase

Fig. 2. Definition of forces (N) in wheelchair propulsion. F_r = radial component of F_{tot}; F_t = tangential component of F_{tot}; F_{tot} = total force; F_x, F_y, F_z = global reference frame; M_{wrist} = wrist torque (Nm); M_{hub} = hub torque (Nm); ϕ = point of force application referenced with respect to the horizontal ($^\circ$).

Recovery Phase

Basic overview of Muscles

Push phase
- Anterior deltoid, pectoralis major, infraspinatous
- Pectoralis major and infraspinatous involved in stabilisation on the joint but subject to fatigue. Teres minor and subscapularis may increase
- Biceps and long head of triceps
- Latissimus dorsi and subscapularis for reposition in recovery

Stop
- Elbow flexors and extensors
- Shoulder flexion and extensors – Latsissimus dorsi, triceps
- Rhomboids lower traps
- Use of abdominal

Turn
- Each shoulder working in opposite direction
Considerations on Demand of Shoulder

- Eccentric, Concentric and Isometric Use of Muscles
- Repetitive Action
- Disability - use of abdominals, hip function, contractures.
- Technique
- Chair design
Shoulder Issues

Sophie Carrigall – 1 point player
• Shoulder subdeltoid bursitus
• Biomechanical issues with chair, scapula control lack of abs and hip flexor contracture

Amy Conroy – 4 point player
• Shoulder pain – tight thoracic spine, elbow flexors and weak abdominals, stiff radio ulnar joint
Take Home Points

• Wheelchair basketball propulsion significantly different within different classes.
• Wheelchair basketball has the challenge of start, stop and turning for demands on the shoulder.
• Shoulder issues linked to significant weakness, stability, stiffness in other parts of the body.
• Further research needed that is specific to Wheelchair basketball propulsion and also looking at stopping and turning.
Propulsion in Wheelchair Basketball

Alison Nagata MSc MCSP
Lead Physiotherapist British Wheelchair Basketball

John Francis MSc
Performance Analyst British Wheelchair Basketball

Optimal Management Of The Paralympic Shoulder