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2. Abstract  30 

Many Gram-positive spore-forming rhizobacteria of the genus Bacillus show potential as biocontrol 31 

biopesticides that promise improved sustainability and ecological safety in agriculture. Here we 32 

present a draft-quality genome sequence for Bacillus velezensis EU07, which shows growth-33 

promotion in tomato plants and biocontrol against Fusarium head blight. We found that the genome 34 

of EU07 is almost identical to that of the commercially used strain QST713 but identified 46 single-35 

nucleotide differences that distinguish these strains from each other. The availability of this genome 36 

sequence will facilitate future efforts to unravel the genetic and molecular basis for its beneficial 37 

properties. 38 

3. Data summary 39 

In this study, we generated genome sequence data, which has been deposited in public databases: 40 

 BioProject PRJNA743875: https://www.ncbi.nlm.nih.gov/bioproject/743875 41 

 Assembly GenBank accession number: GCA_019997305.2: 42 

https://www.ncbi.nlm.nih.gov/nuccore/JAIFZJ000000000 43 

 NCBI RefSeq accession number: GCF_019997305.2 44 

 Sequence Read Archive (SRA) accession number: SRR27184279 45 

The authors confirm all supporting data, code and protocols have been provided within the article or 46 

through supplementary data files. 47 

 48 

4. Introduction 49 

Many Gram-positive spore-forming rhizobacteria of the genus Bacillus show potential as biocontrol 50 

biopesticides that promise improved sustainability and ecological safety in agriculture [1–3]. Here, 51 

we present genomic sequencing data for Bacillus strain Egem-Utku 07, hereafter known as EU07. 52 

This strain was previously isolated from the rhizosphere of diseased tomato plants [4] in an effort to 53 

collect strains that could inhibit the soilborne pathogen Fusarium oxysporum f. sp. radicis-lycopersici 54 

[4], which causes crown rot on tomato. We demonstrated that EU07 inhibits this pathogen in vitro 55 

[4]. Furthermore, EU07 promotes growth and inhibits fusarium head blight in planta [5]. We 56 
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previously established that EU07 is a member of the genus Bacillus, but its precise species identity 57 

was ambiguous. Furthermore, in the absence of sequence data, little was known about the potential 58 

molecular mechanisms for its beneficial properties. Here, we present a draft-quality genome 59 

sequence assembly and genomic sequence reads from strain EU07). This dataset will help to better 60 

understand EU07’s phylogeny and taxonomy and provide a resource to assist elucidation of the 61 

molecular mechanisms of its beneficial traits. 62 

5. Materials and methods 63 

5.1 Bacterial strain and isolation of genomic DNA 64 

We isolated genomic DNA from bacterial strain EU07 from fresh liquid culture grown for 24-hour in 65 

Nutrient Broth pH 7.2. We note that this medium provides a laboratory environment quite different 66 

from the bacterium’s normal soil environment. The liquid culture was inoculated from a single 67 

colony and therefore was assumed to be clonal.  We used  the ISOLATE II Genomic DNA Kit (Bioline), 68 

following the manufacturer’s instructions. The quality and concentration of the gDNA were assessed 69 

using the NanoDrop 2000c (ThermoFisher Scientific). 70 

5.2 DNA sequencing 71 

Genomic DNA was sent to the University of Exeter’s Sequencing Facility 72 

(https://biosciences.exeter.ac.uk/sequencing/) for Illumina Nextera XT library preparation and 73 

sequencing on the Illumina MiSeq platform to generate 748,528 pairs of 300-bp reads with a mean 74 

insert size of approximately 400 bp.  75 

5.3 Genome sequence assembly 76 

We performed adapter trimming and quality filtering on the MiSeq reads using Trim Galore version 77 

0.6.7 [6], which incorporates Cutadapt version 3.5 [7]. The -q parameter was set to 30 and we used 78 

the --paired option. The resulting cleaned read-pairs served as input for de-novo assembly using 79 

SPAdes version 3.13.1 [8] with the --careful option. The resulting scaffolds and contigs were re-80 

ordered against the reference genome of strain FZB42 with the Mauve Contig Mover [9]. Annotation 81 

was added by the NCBI Prokaryotic Genome Annotation Pipeline version 6.6 [10] after submission of 82 

the genome assembly. The command lines are documented on GitHub at 83 

https://github.com/davidjstudholme/bacillus_EU07/tree/main/assembly  and in the Zenodo 84 

repository [11]. 85 Pr
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5.4 Assessment of genome-assembly quality  86 

We calculated assembly statistics using QUAST version 5.2.0 [12]. We checked read coverage of the 87 

genome assembly by aligning the EU07 reads against the EU07 assembly and calculating alignment 88 

statistics with Qualimap version 2.3 [13]. The alignment was performed using BWA-mem version 89 

0.7.17 [14]; then we reformatted and sorted the output using SAMtools version 1.13 [15]. The full 90 

details of the command lines are documented at 91 

https://github.com/davidjstudholme/bacillus_EU07/blob/main/assemblyQC/README.md and in the 92 

Zenodo repository [11].  93 

5.5 Average nucleotide identity (ANI) 94 

We used fastANI [16] to calculate average nucleotide identity (ANI) between the genome of EU07 95 

and each of the B. amyloliquefaciens group (taxonomy ID: 1938374) genome assemblies retrieved 96 

from GenBank [17, 18]. The exact command lines are documented on GitHub at 97 

https://github.com/davidjstudholme/bacillus_EU07/ and the Zenodo repository [11] 98 

5.6 Phylogenomics 99 

To generate a maximum-likelihood phylogenetic tree based on genome-wide single-nucleotide 100 

polymorphisms (SNPs), we used PhaME [19] with FastTree [20]. The exact command lines used are 101 

documented at https://github.com/davidjstudholme/bacillus_EU07/ and the Zenodo repository [11]. 102 

The resulting tree was rendered using the Interactive Tree of Life (IToL) 6.8.1 [21] 103 

5.7 Whole-genome alignment 104 

Genome sequences were aligned using progressiveMauve version 2.4.0 [22] after first re-ordering 105 

the contigs against the reference genome of strain KNU-28 [23] with the Mauve Contig Mover [9]. 106 

The resulting alignment was visualised using Mauve snapshot_2015-02-25 [24]. The exact command 107 

lines used are documented at https://github.com/davidjstudholme/bacillus_EU07/ and the Zenodo 108 

repository [11]. 109 

5.8 Further whole-genome analyses 110 

We used the Proksee web server [25] to perform several analyses of the assembled EU07 genome. 111 

This included BLASTN searches against 888 related genomes, annotation of horizontally acquired 112 

genomic regions with Alien Hunter [26] and identification of bacteriophage sequences using 113 Pr
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VirSorter [27, 28] and Phigaro [29]. Variant-calling was performed using the Parsnp tool in Harvest 114 

[30]. 115 

6. Results and Discussion 116 

6.1 Genome sequencing and assembly 117 

We generated 748,528 pairs of 300-bp Illumina MiSeq sequencing reads from EU07 genomic DNA. 118 

This represents approximately 100X coverage of the 4.2-Mb genome. Trimming and filtering with 119 

Trim Galore left 715,442 pairs of reads, with lengths ranging from 20 to 300 bp. De-novo assembly 120 

with SPAdes yielded 266 contigs with a total length of 4.2 Mbp and N50 length of 52.8 kb. This was 121 

deposited in GenBank via the NCBI Submission Portal under accession number GCA_019997305.2. 122 

The NCBI’s contamination filtering removed five contigs, leaving 261. The NCBI PGAP annotation 123 

system predicted 4273 genes, of which 4081 encode putative proteins. The results of NCBI’s quality 124 

check with CheckM v1.2.2 [31, 32] revealed a completeness of 98.16 % (85th percentile) and 0.47 % 125 

contamination. 126 

Alignment of sequencing reads against the genome assembly and analysis with Qualimap revealed a 127 

mean coverage of 93.25 X and standard deviation of 89.87. Almost all of the genome assembly 128 

(99.96% had at least 1 X coverage and 97.59% of the assembly has at least 10 X coverage. The full 129 

Qualimap report and output files are available in the Zenodo repository [11], allowing users of this 130 

data to take coverage into account when performing analyses. We note that the contig with least 131 

coverage is JAIFZJ020000237.1, having only 1.04 X coverage. Nevertheless, BLAST searches reveal 132 

that this contig shows very high levels of sequence similarity to genomes of other Bacillus velezensis 133 

strains, increasing confidence in its validity.  134 

  135 

6.2 EU07 belongs to the species Bacillus velezensis 136 

Previously, the phylogenetic and taxonomic position of strain EU07 had been ambiguous and we 137 

previously referred to it a ‘B. sp.’ and ‘B. subtilis’ [4, 5]. To identify the species to which strain EU07 138 

belongs, we uploaded the genome assembly to the Type Strain Genome Server (TYGS) [33]. This 139 

classified EU07 to the species with Bacillus amyloliquefaciens. Among the sequenced type strains in 140 

TYGS, the most similar to EU07 was FZB42 [34], which is the type strain of B. amyloliquefaciens 141 Pr
ep
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subsp. plantarum [35]. However, this taxon is now considered to be synonymous with B. velezensis 142 

and distinct from B. amyloliquefaciens [36]. Hereafter, we refer to our strain as B. velezensis EU07. 143 

6.3 EU07 belongs to a clade of plant-associated strains of B. velezensis 144 

To identify previously sequenced similar genomes, we calculated average nucleotide identity (ANI) 145 

between B. velezensis EU07 and all 888 genome assemblies available in GenBank for B. 146 

amyloliquefaciens group. This revealed that EU07 shares more than 99.9 % ANI with 13 previously 147 

sequenced genomes. Table 1 lists the genomes showing the highest levels of ANI to that of B. 148 

velezensis EU07. This includes strains that previously have been classified variously as B. 149 

amyloliquefaciens or B. velezensis. However, they all fall within the B. velezensis clade [36–38] and 150 

should be considered to belong to that species. To further elucidate the evolutionary relationships of 151 

EU07, we generated a phylogenomic tree including these closely related strains and the relevant 152 

type strains; this is presented in Figure 1. Consistent with the ANI results, strain EU07 falls within a 153 

clade that includes the same 13 strains that showed greatest ANI with EU07. Alignment of these 154 

genomes with Mauve (Figure 2) reveals extensive conservation and co-linearity of the chromosome 155 

sequence among these strains. Comparison of the EU07 chromosome versus the genome sequences 156 

of related strains, as shown in Figure 3, revealed that most of the presence—absence polymorphism 157 

was associated with loci predicted to originate from bacteriophage genomes. 158 

Among the strains closely related to EU07 are several that have previously been described as having 159 

growth-promoting and/or pathogen-inhibitory properties. For example, strain BS006 was isolated 160 

from roots of Physalis peruviana in Colombia and promotes growth in banana [39]. Strain KNU-28 161 

was isolated from peach leaves in Korea [23]. Strain ALB79 was isolated from grapes in northern 162 

California and shown to inhibit the growth of Listeria monocytogenes in vitro [40], while strain 163 

QST713 is used commercially (Serenade, Bayer) to protect mushroom crops against green mould 164 

disease and promotes growth in banana [37, 41], among other applications. The endophytic Bacillus 165 

strain DMW1 was isolated from the inner tissues of potato tubers and exhibited strong biocontrol 166 

activity [42]. The near-identity of these genome sequences, independently isolated from plants in 167 

diverse geographical locations, suggests that EU07 is a member of a widely disseminated lineage of 168 

B. velezensis with biocontrol and growth-promoting properties. The molecular mechanisms and 169 

genetic determinants of these properties have been extensively reviewed elsewhere [43–45] and 170 

include gene-clusters for secondary metabolites such as bacilysin, fengycin and macrolactin, which 171 

are conserved in B. velezensis lineage that includes BS006 and EU07 [38]. 172 Pr
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Since our previous phenotypic comparisons between strains EU07 and QST713 revealed differences 173 

in their abilities to suppress fungal growth, we compared their genome sequences to identify 174 

possible genetic determinants of the observed differences. Their genomes are almost identical, with 175 

no detectable differences in their gene contents. However, we identified 46 single-nucleotide 176 

differences that are listed in Table 3. These differences appear to be non-uniformly distributed 177 

across the genome. For example, 20 of the 46 SNPs occur within a single gene that encodes the beta 178 

subunit of a class-1b ribonucleoside-diphosphate reductase [46] (RefSeq: WP_108702400.1; locus 179 

tag: BVQ_RS09140). This suggests that these differences might be explained by a recombination 180 

events associated with horizontal genetic transfer rather than point mutations. We also identified 181 

some sequence differences between EU07 and QST713 in the intergenic regions between several 182 

tRNA genes (GenBank: JAIFZJ010000168.1). These genetic differences may explain the previously 183 

observed differences observed between the DNA fingerprints of these two strains when previously 184 

assayed using RAPDs [4]. 185 

6.4 Conclusion 186 

Genome sequencing of potential biocontrol strain EU07 revealed that it belongs to the species B. 187 

velezensis, a species often closely associated with plant roots and well known for promoting plant 188 

growth and biocontrol. The EU07 strain is genetically almost identical to the commercially used 189 

strain QST713 (Serenade®) and several other previously sequenced and characterized strains; 190 

however, we identified several genes containing single-nucleotide differences that can distinguish 191 

between EU07 and QST713.  Strain EU07 is more distantly related to the commercially used B. 192 

velezensis strain FZB24 (TAEGRO®), previously known as the type-strain of B. amyloliquefaciens 193 

subsp. plantarum. The availability of this genome sequence will facilitate future efforts to unravel 194 

the genetic and molecular basis for its beneficial properties. 195 

  196 
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7. Figures and tables 197 

GenBank accession number Reference Strain ANI (%) 

GCA_004421045.1 [47] “B. amyloliquefaciens” FS1092 99.99 

GCA_021228895.1 [48] B. velezensis A4P130 99.99 

GCA_003986895.1  B. velezensis BE2 99.99 

GCA_007678125.1 [49] B. velezensis DE0189  99.99 

GCA_003073255.1 [37] B. velezensis QST713  99.99 

GCA_026156445.1 [50] B. velezensis CHBv2 99.98 

GCA_001709055.1  B. velezensis CFSAN034339  99.98 

GCA_019093835.1  “B. amyloliquefaciens” BK 99.98 

GCA_014791945.1  “B. amyloliquefaciens” INH2-4b 99.98 

GCA_028609625.1 [42] B. velezensis DMW1 99.98 

GCA_003149795.1 [40] “B. amyloliquefaciens” ALB79 99.95 

GCA_024300805.1 [23] “B. amyloliquefaciens” KNU-28  99.95 

GCA_001278635.1 [39] “B. amyloliquefaciens” BS006  99.94 

GCA_024134605.1  B. velezensis 2987tsa1  99.12 

GCA_000817575.1 [51] “B. amyloliquefaciens” TF28  99.10 

GCA_034060585.1  B. velezensis Y-4  99.07 

GCA_010671715.1 [52] B. velezensis HU-91  99.07 

GCA_009193045.1 [53] B. velezensis BPC6  99.07 

GCA_034061945.1  B. velezensis YN-2A 99.05 

GCA_026786545.1  B. velezensis NRRL B-59289  99.04 

GCA_024138555.1 [54] “B. amyloliquefaciens” TPS17  99.04 

GCA_029866505.1 [55] “B. amyloliquefaciens” MN-13  99.03 

GCA_000341875.1 [56] B. velezensis UCMB5036  99.02 

GCA_009789615.1 [57] B. velezensis BA-26 99.02 

GCA_029910295.1  B. velezensis PT4 99.01 

GCA_009738165.1 [58] B. velezensis HN-Q-8  99.01 

GCA_021559715.1 [59] B. velezensis CF57 99.01 

GCA_012647845.1 [60] B. velezensis UCMB5140  99.01 
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Table 1. Genomes that share more than 99 % average nucleotide identity (ANI) with B. velezensis 198 

EU07. 199 

  200 
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 201 

GenBank accession Taxon Reference 

GCA_003149795.1 ““B. amyloliquefaciens”” ALB79 [40] 

GCA_019093835.1 “B. amyloliquefaciens” BK  

GCA_001278635.1 “B. amyloliquefaciens” BS006 [39] 

GCA_000196735.1 B. amyloliquefaciens DSM7 T [34] 

GCA_004421045.1 “B. amyloliquefaciens” FS1092 [47] 

GCA_014791945.1 “B. amyloliquefaciens” INH2-4b  

GCA_024300805.1 “B. amyloliquefaciens” KNU-28 [23] 

GCA_029866505.1 “B. amyloliquefaciens” MN-13 [55] 

GCA_000817575.1 “B. amyloliquefaciens” TF28 [51] 

GCA_024138555.1 “B. amyloliquefaciens” TPS17 [54] 

GCA_000262045.1 B. siamensis KCTC 13613 T [61] 

GCA_024134605.1 B. velezensis 2987tsa1  

GCA_021228895.1 B. velezensis A4P130 [48] 

GCA_001647965.1 B. velezensis AP194 [62] 

GCA_009789615.1 B. velezensis BA-26 [57] 

GCA_003986895.1 B. velezensis BE2  

GCA_009193045.1 B. velezensis BPC6 [53] 

GCA_003431885.1 B. velezensis (B. methylotrophicus) 

CBMB205 T 

[63] 

GCA_021559715.1 B. velezensis CF57 [59] 

GCA_001709055.1 B. velezensis CFSAN034339  

GCA_026156445.1 B. velezensis CHBv2 [50] 

GCA_007678125.1 B. velezensis DE0189 [49] Pr
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GCA_028609625.1 B. velezensis DMW1 [42] 

GCA_000015785.2 B. velezensis (B. amyloliquefaciens subsp. 

plantarum) FZB42 T 

[34] 

GCA_009738165.1 B. velezensis HN-Q-8 [58] 

GCA_010671715.1 B. velezensis HU-91 [52] 

GCA_001461835.1 B. velezensis (= B. oryzicola) KACC 18228 T [64] 

GCA_001267695.1 B. velezensis KCTC 13012 [65] 

GCA_001461825.1 B. velezensis NRRL B-41580 T [36] 

GCA_026786545.1 B. velezensis NRRL B-59289  

GCA_026787705.1 B. velezensis NRRL BD-154  

GCA_029910295.1 B. velezensis PT4  

GCA_003073255.1 B. velezensis QST713 [37] 

GCA_000341875.1 B. velezensis UCMB5036 [56] 

GCA_012647845.1 B. velezensis UCMB5140 [60] 

GCA_034060585.1 B. velezensis Y-4  

GCA_034061945.1 B. velezensis YN-2A  

GCA_019997305.1 B. velezensis EU07 This study    

 202 

Table 2. Genome sequences included in the phylogenomic analysis.  203 
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 204 

 205 

Position in 

CP025079.1 

Nucleotide in 

QST713 

Nucleotide in 

EU07 

Amino-acid 

change 
Predicted gene product 

21222 A G K -> E BVQ_RS00080: serine--tRNA ligase 

230096 A C E -> A 

BVQ_RS21890: non-ribosomal peptide synthetase 

 

230098 A C K -> Q 

230111 C A A -> E 

530737 T G Y -> * 

BVQ_RS02595: hypothetical protein 

 

530789 T G L -> V 

530811 T G I -> S 

531288 T G I -> S 

705298 A C F -> V BVQ_RS03655: GNAT family N-acetyltransferase 

855165 A C Non-coding 

 

1168486 A C Non-coding 

 

1215136 A C F -> C BVQ_RS06330: contact-dependent growth inhibition system 

immunity protein 

1851920 T G F -> L 

BVQ_RS09140: class 1b ribonucleoside-diphosphate reductase 

subunit beta 

 

1851923 A T G -> G 

(synonymous) 

1851925 C A T -> K 

1851929 G T K -> N 

1851932 A G E -> E 

(synonymous) 

1851935 A G Q -> Q 

(synonymous) 

1851938 C T D -> D 

(synonymous) 

1851941 T G T -> T 

(synonymous) 

1851944 T C Y -> Y 

(synonymous) 

1851950 A G K -> K 

(synonymous) Pr
ep
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1851953 T G V -> V 

(synonymous) 

1851954 T C L -> L 

(synonymous) 

1851956 A C L -> F 

1851959 T C A -> A 

(synonymous) 

1851962 A C G -> G 

(synonymous) 

1851965 T G L -> L 

(synonymous) 

1851969 T C L -> L 

(synonymous) 

1851971 A G L -> L 

(synonymous) 

1851972 T C L -> L 

(synonymous) 

1851974 G T L -> F 

1878004 T G Non-coding 

 

2191740 T C D -> G BVQ_RS10680: cysteine hydrolase family protein 

2415378 C A Non-coding 

 

2415381 C A Non-coding 

 

2415440 C A Non-coding 

 

2722225 G T Non-coding 

 

2722243 T G Non-coding 

 

3268938 G T A -> E 

BVQ_RS16510: class 1 isoprenoid biosynthesis enzyme 

3269022 T G N -> T 

3467035 A C Non-coding 

 

3489562 A G F -> F 

(synonymous) 

BVQ_RS17685: lantibiotic immunity ABC transporter MutG 

family permease subunit 

3490697 T A I -> I 

(synonymous) 

BVQ_RS17690: lantibiotic immunity ABC transporter MutE/EpiE 

family permease subunit 

3573178 T A Non-coding 

 

4000822 T G Non-coding 

 

 206 
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Table 3. Forty-six single-nucleotide polymorphisms between B. velezensis strains EU07 and 207 

QST713.   208 
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 223 

 224 

 225 

Figure 2. Whole-genome sequence alignment between B. velezensis EU07 and closely related 226 

strains. Genome sequences were re-ordered, aligned and visualised using Mauve. Accession 227 

numbers for the genome assemblies can be found in Table 2.   228 

  229 
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 230 

 231 

 232 

Figure 3. Overview of the genome of B. velezensis EU07 and comparison with closely related 233 

genomes. The circular plot of the EU07 chromosome was generated using Proksee. Data are 234 

arranged in nine concentric circular tracks as follows: (1) GC skew, (2) EU07 contigs, (3) BLASTN hits 235 

against QST713 genome, (4) BLASTN hits against BS006 genome, (5) BLASTN hits against ALB79 236 

genome, (6) BLASTN hits against FZB542 genome, (7) predicted horizontally-acquired regions 237 

predicted by Alien Hunter, (8) phage loci predicted by VirSorter and (9) phage loci predicted by 238 

Phigaro.  239 

 240 
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Line 28 - "sGram" change to "Gram". 
We have now resolved this. 
 
 
Line 28/29 - "biocontrol biopesticides agricultural" change to just "biocontrol 
pesticides" as agriculture is mentioned later in the sentence. 
We have now done this. 
 
 
46 - INTRODUCTION. For me this is far too short. It did not give me that much 
context about why this dataset was a vital part of ongoing research, or why it 
is important.  
 
Thank you for this feedback. We have now substantially revised the Introduction 
section to improve clarity about the background of this strain. However, it remains 
fairly short. This is a Data Note paper. On the Journal’s website at 
https://www.microbiologyresearch.org/article-types, they suggest the following article 
as an example of a Data Note: https://doi.org/10.1099/acmi.0.000655.v3. We note 
that its Introduction is of similar length to ours and understand that for this kind of 
article the Introduction should indeed be concise. 
 
 
There is no reference associated to previous work isolating this strain,  
Sorry for the lack of clarity. The isolation was previously described in reference 
number 4 (Baysal Ö, Çalişkan M, Yeşilova Ö. An inhibitory effect of a new Bacillus 
subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis-lycopersici. 
Physiological and Molecular Plant Pathology. 2008;73:25–32.). We have now added 
another citation to this reference in the sentence about isolating the strain. 
 
and the reader is not given much information as to the relevance of this EU07 
strain. Why was it isolated in the first place? 
The story of EU07’s isolation is described in reference number 4. It was isolated in 
an effort to isolate strains that inhibit the soilborne pathogen Fusarium oxysporum f. 
sp. radices-lycopersici. 
 
Is it a well studied strain? 
It has been studied only in those studies that we already cited. 
 
Is it part of a soil ecosystems natural defences against pathogens? 
We do not know the answer to that question and therefore cannot provide an 
answer. In fact, it is not clear to the authors how one could go about empirically 
testing that hypothesis. It would require an experiment in which we remove the strain 
from the soil ecosystem and determine whether that has any impact on its “natural 
defences”.  
 
 
 Is it an engineered strain used in agriculture? 
No. 
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Also, authors write "it inhibits / it promotes" at a couple of points; I would put 
the name of the strain here instead to be specific. 
Thank you for this excellent idea. We have made the suggested changes in the 
Introduction section. 
 
Line 57 - Bacterial strain DNA isolation. More information needed here too. 
Was the DNA isolated from a clonal sample? Which broth was used? Was the 
broth similar to environmental conditions, or more similar to lab conditions? 
For DNA extraction, the bacteria were grown in Nutrient Broth pH 7.2, which provides 
a laboratory environment quite different from the bacterium’s normal soil 
environment. The culture was grown from a single colony and therefore clonal. We 
have now added this information to the Methods. 
 
Line 91 - I would say how many related genomes here. I know it's mentioned 
later on (888?) but it should be put in the methods section. 
We have added this now. 
 
Line 98 - How consistent was the coverage? Did you have areas of high / low 
coverage that may affect the analysis of the data? 
We checked this using Qualimap. We added a new section to the Methods: “5.4 
Assessment of genome-assembly quality”. Furthemore, we added the following text 
to the Results: 

“Alignment of sequencing reads against the genome assembly and analysis with 
Qualimap revealed a mean coverage of 93.25 X and standard deviation of 89.87. 

Almost all of the genome assembly (99.96% had at least 1 X coverage and 97.59% 
of the assembly has at least 10 X coverage. The full Qualimap report and output files 

are available in the Zenodo repository [32], allowing users of this data to take 
coverage into account when performing analyses. We note that the contig with least 

coverage is JAIFZJ020000237.1, having only 1.04 X coverage. Nevertheless, 
BLAST searches reveal that this contig shows very high levels of sequence similarity 
to genomes of other Bacillus velezensis strains, increasing confidence in its validity.” 

 
Line 127 - Do you have any hypothesis as to why this strain would have more 
bacteriophage genomes within it? Is it more susceptible in some way? 
No. There is no evidence that this genome has more bacteriophage genomes in it. 
We are not making that claim. 
 
 
I suggest the authors afford more details to simply describe the processes 
about how to use the web servers that the authors mentioned. 
 
The authors consider that providing tutorial material about the Proksee, TYGS and 
iTOL webservers is outside the scope of this data article, whose purpose is to 
describe the genomic sequencing dataset. These webservers provide their own 
documentation on how to use them. 
 
 

1. L160，charcaterised，please correct to characterized. 

Thank you for spotting that error. This is now corrected. 
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2. Figure 2, I suggest the authors add the species names of the genomes in the 
picture of Figure 2. 
We have now added these labels to Figure 2. 
 
 
3. The names of genus and species in the Reference section should be 
corrected to be italic. 
We have fixed this now. 
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