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A B S T R A C T   

We consider several approaches to a design of a regional-to-continent-scale automatic pollen monitoring network 
in Europe. Practical challenges related to the arrangement of such a network limit the range of possible solutions. 
A hierarchical network is discussed, highlighting the necessity of a few reference sites that follow an extended 
observations protocol and have corresponding capabilities. 

Several theoretically rigorous approaches to a network design have been developed so far. However, before 
starting the process, a network purpose, a criterion of its performance, and a concept of the data usage should be 
formalized. For atmospheric composition monitoring, developments follow one of the two concepts: a network 
for direct representation of concentration fields and a network for model-based data assimilation, inverse 
problem solution, and forecasting. The current paper demonstrates the first approach, whereas the inverse 
problems are considered in a follow-up paper. 

We discuss the approaches for the network design from theoretical and practical standpoints, formulate 
criteria for the network optimality, and consider practical constraints for an automatic pollen network. An 
application of the methodology is demonstrated for a prominent example of Germany's pollen monitoring 
network. The multi-step method includes (i) the network representativeness and (ii) redundancy evaluation 
followed by (iii) fidelity evaluation and improvement using synthetic data.   

1. Introduction 

Airborne pollen and fungal spores are routinely measured across the 
world for a variety of applications, including allergy diagnosis and 
treatment (Amato et al., 1998; Cecchi et al., 2010; D'Amato et al., 2007; 
de Weger et al., 2013; Sofiev and Bergmann, 2013), crop forecasting and 
plant disease control (Ben Dhiab et al., 2017; Rodríguez-Rajo et al., 
2010), as well as biodiversity monitoring and understanding the impacts 
of climate change (Chmielewski and Rötzer, 2002; Galán et al., 2016, 
2005; Newnham et al., 2013; Smith et al., 2014; Ziello et al., 2012). In 
Europe, most of the monitoring sites are part of regional or national 
networks run by a range of different organisations, from research or 
medical institutions to national weather services, most of whom also 
participate in the European Aeroallergen Network EAN (https://www. 
ean-net.org/ (Rybnicek and Jaeger, 2001; Berger et al., 2011; Buters 
et al., 2018)). To date, practically all networks use volumetric pollen and 
spore traps of Hirst-type (Hirst, 1952), for which a European standard 
has been developed (CEN 16868:2019). 

The availability of instruments that can identify pollen automatically 
is leading to a paradigm shift in the bioaerosol monitoring across 
Europe. Regional and national automatic monitoring networks have 
been established in Bavaria, Germany (Oteros et al., 2020), Croatia and 
Serbia (Tešendić et al., 2020), and Switzerland (Crouzy et al., in prep). 
Apart from these networks, there are individual sites scattered around 
the continent, and their number is growing. To coordinate these activ-
ities, an AutoPollen Programme was established by European associa-
tion of meteorological institutes EUMETNET in 2018, to facilitate the 
development of a real-time pollen monitoring network across Europe 
(Clot et al., 2020). It will be a hybrid network, incorporating monitoring 
sites of regional and national networks from across the continent and 
using various measurement systems. The programme aims to provide 
high-quality information on pollen concentrations in a standardised 
way. User-tailored products will be made freely available to the public 
and specific target audiences, such as medical practitioners, researchers, 
environmental agencies, agriculture, and forest industries. 

An overview of the monitoring technologies suitable for (near-) real- 
time pollen monitoring has been provided by (Buters et al., 2021), 
whereas guidelines and protocols for carrying out these observations 
have been described by Tummon et al. (2022). A practical question 
related to the establishment of a Europe-wide automatic pollen network 
is the optimal distribution of the monitoring sites across the continent, 
as well as the number of the sites. Given the relatively high initial costs, 
the number of stations will likely be limited in the coming years, so the 
return on the investment will strongly depend on representativeness of 
these sites. 

The objectives of this paper are: (i) to bring together the rigorous 
generic principles and practically used technique of network design; (ii) 
to suggest a practically applicable procedure for designing multi- 
purpose multi-taxa pollen monitoring networks at regional and conti-
nental levels; and (iii) to demonstrate its application for Germany (Eu-
ropean scale will be addressed in a follow-up manuscript). 

The paper is organized as follows. The next section outlines the 
general principles of the network design, developed theoretical and 
practical approaches, and their applications to pollen (eventually, 
spores and other bioaerosols) network. A formal problem statement and 
specific technologies for its solution are presented in Sections 4 and 5, 
respectively. As an example of the technology application, the current 
pollen monitoring network of Germany is analysed and configurations 
for an automated network are proposed in Section 6. The pros- and 
contras- of the suggested approach and its future challenges are dis-
cussed in Section 7. 

2. Approaches to the network design 

2.1. Network design from a theoretical standpoint 

The network design problem is a specific case of the problem of 
optimal design of an experiment: to choose a setup and procedure for 
collecting data that will maximize the pre-selected criteria of statistical 
representativeness of the collected data for a given problem (Berliner 
et al., 1999). Specific procedures and workable algorithms are far from 
trivial and fully dependent on the problem at hand (Berliner et al., 1999; 
Bocquet et al., 2015). Arguably, the most-important step in formulating 
the network design problem is to formalize the purpose of the network 
and the corresponding representativeness criterion, which needs to be 
optimized by the site selection procedure. 

For atmospheric composition monitoring, the network design has 
typically been formulated via one of two concepts (Bocquet et al., 2015; 
Koohkan et al., 2012; Lauvaux et al., 2012; Ramaker et al., 2003; Reza 
Koohkan and Bocquet, 2012). 

2.1.1. Network for direct reconstruction of concentration fields from point 
measurements 

The first concept maximizes the network representativeness for a 
direct evaluation of the concentrations over the target area (e.g., a 
country), primarily via spatial inter− /extrapolation to fill gaps between 
the stations. Such a network does not necessarily require models for the 
operations but can be combined with classical model data assimilation 
when measurements are used for adjusting the modelled concentrations 
in vicinity of the stations. Such a combination is able to create acceptable 
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analysis fields but is inefficient in improving model forecasts (Elbern 
et al., 2007; Vira and Sofiev, 2012; Sofiev, 2019). A somewhat more 
efficient alternative is the model-measurement data fusion (Sofiev et al., 
2017), which can be a suitable tool for interpolation of the measured data 
between the monitoring sites and for improving the model forecasts. 

2.1.2. Network for applications together with atmospheric composition 
models 

The second concept is based on source inversion problems: obser-
vations of the concentrations are assimilated into a model to refine the 
pollen emission estimates, both in time and space. Thereafter, concen-
trations over the region are computed by the model – and these model 
predictions are used as the input for downstream services. Such a 
network works together with models. This combination provides esti-
mation of the pollen sources, consistent concentration patterns, and 
simultaneously improves the model forecasts (Elbern et al., 2007; Vira 
and Sofiev, 2012; Sofiev, 2019). 

The current paper demonstrates the application of the first concept: 
construction of a pollen observational network for the direct usage of 
observations (a de facto current standard in aerobiology). A follow-up 
paper will concentrate on the inverse problems. 

An example of a network designed for the direct observation-based 
representation of the concentration fields is the nuclear accidents alert 
system in France (Abida et al., 2008), where a “near-optimal” set of 
stations was pre-selected from 507 possible locations using the Simu-
lated Annealing statistical method (Kirkpatrick et al., 1983). The eval-
uation of possible networks was performed via spatial interpolations of 
the observations, i.e., the network was built so that the concentrations 
anywhere in France could be restored using observations alone via 
interpolation between the stations. With the simple interpolation 
instead of dispersion modelling, the evaluation of fidelity of each 
network configuration was computationally cheap, whereas the Simu-
lated Annealing method limited the number of configurations to test. 
Apart from a practical example, the study of Abida et al. (2008) deliv-
ered a warning: networks for direct usage of observations must be dense. 

All published studies highlight that a rigorous solution of any real- 
life network design problem is not feasible from a computational 
standpoint. 

The most popular simplification has been a pre-selection of site lo-
cations followed by an evaluation of the changes in fidelity when adding 
or removing sites (Abida et al., 2008; Bocquet et al., 2015; Lauvaux 
et al., 2012). But even then, the problem remains demanding: the 
number of stations and their locations are the parameters to identify 
from combinatorics, and each combination needs to be assessed. 
Therefore, the number of inverse problems to solve is of the order of 

magnitude of 
(

N
n

)

, where N is the total number of possible station 

locations (e.g., 507 for France alone in the Abida et al., 2008 work), and 
n is the number of stations that can be distributed, let say, 100. The 
Onion Peeling method (Kirkpatrick et al., 1983) is one of the ways to 
limit the computations. Other methods suggested in the literature are 
based on multiple-objective planning analysis: (i) statistical methods - 
spatial correlation coefficients (Elkamel et al., 2008), PCA and cluster 
analysis (Wang et al., 2018), stepwise genetic algorithms (Hao and Xie, 
2018; Li et al., 2019); (ii) holistic approach - Fuzzy Analytic Hierarchy 
process for multi-purpose tasks (Mofarrah and Tahir, 2011; Mofarrah 
and Husain, 2010), heuristic optimization algorithms (Elkamel et al., 
2008), scale-related regionalized optimization (Abida et al., 2008; 
Lauvaux et al., 2012), etc. 

2.2. Pollen network design from a practical standpoint 

The problem of designing an optimal pollen-monitoring network is 
affected by additional, and often not formalized factors. They originate 
from the differences between applications for pollen monitoring: med-
ical and environmental users are likely to be interested in different 

species and locations. Technical limitations, logistical feasibility, basic 
infrastructure needs, funding schemes, and administrative concerns, etc. 
put additional constraints on possible designs. 

2.2.1. A European network or a set of national networks in Europe? 
Today, automatic pollen monitoring networks across Europe are 

being constructed at the regional or national level, wherever financial 
resources and political will make it possible (Chappuis et al., 2020; 
Crouzy et al., 2016; Oteros et al., 2020; Šaulienė et al., 2019; Tešendić 
et al., 2020). Due to very diverse internal procedures and conditions, as 
well as different devices selected for operations, only a limited coordi-
nation between these projects has been achieved. The current progress 
has been largely due to harmonization and communication efforts 
within the AutoPollen framework (see Annex). Therefore, in addition to 
designing and planning a European-wide optimal network, it is neces-
sary to consider regional and national scales, where a comparatively 
rigorous approach has been developed and used, for example, in the 
design of the ePIN network in Bavaria, Germany (Oteros et al., 2019) or 
in the reevaluation of the design of the SwissPollen Network in Swi-
zerland (Lieberherr et al. in prep). 

2.2.2. Stakeholder-driven constraints 
A pollen-monitoring network designed for medical applications 

should provide the best data for as large fraction of the population as 
possible. Since interpolations, inverse problems, and models have their 
uncertainties, locating the stations in or near large cities is a tempting 
way to increase the accuracy and obtain user-relevant (i.e., for clinical 
needs) information directly from the observations. A limitation is the 
representativeness of individual stations: it falls fast with increasing 
distance, i.e., each city would have to have at least one station. But even 
this may not be enough: intra-city differences are high, driven by park 
zones, microclimate, configuration of streets, etc. (Werchan et al., 
2018). This problem is also related to the temporal resolution of the data 
(section 7.3). 

Pollen emission from plants describes vegetation phenology better 
than the airborne concentrations do. Therefore, the network constructed 
for the best emission-inversion criterion would be more suitable for the 
environmental, forestry and agriculture stakeholders. Sub-urban and 
rural sites usually have better spatial representativeness than the city- or 
street-level locations, but they also face this problem: local relief, 
proximity to water bodies, forests, or agricultural areas also create in-
homogeneity in the pollen distribution patterns. The spatial scale of 
variability is much wider than in cities, but so are the areas to cover. 
Therefore, these applications will also require the network density cor-
responding to the needed spatial and temporal resolution. 

Many applications, such as monitoring the environment's state and 
the population's changing exposure to allergenic pollen in a changing 
climate, require multi-decadal assessments. The EAN network has been 
generating a rich set of long-term observations (Fig. 1), which should be 
maintained with the new network, despite these sites might be sub- 
optimal for other tasks. 

These considerations bring about three major reductions in the list of 
potential locations of the sites:  

- all existing pollen monitoring sites with long time series of high 
quality should be included in the automatic network; “long” here 
means at least three complete solar cycles, i.e. 33 years (Gray et al., 
2010; Nagovitsyn and Kuleshova, 2012; WMO, 2017), Fig. 1.  

- Capital cities or/and major cities, including their suburbs (e.g., over 
one million of inhabitants) should be considered as priority locations 
for additional stations after the long-time series sites are counted.  

- infrastructure availability and logistical feasibility (see Buters et al., 
2021 for requirements to the station locations) makes existing air 
quality or meteorological monitoring sites attractive for setting up 
the pollen monitoring. However, requirements of pollen monitors 
can differ from those of other applications. 
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The above requirements can be already overwhelming with regard to 
the number of sites, thus leaving no devices for other locations. In 
general, networks for direct usage of the observations can utilise as 
many stations as one can afford (Abida et al., 2008). The denser the 
network the more details it can see, and the higher its temporal and 
spatial resolution can be. The limitations are purely financial. Therefore, 
below we consider the total number of the sites as an external parameter 
and concentrate on optimizing the locations of these sites. 

Besides selecting the geographically optimal location (macro scale), 
the local environment at the micro scale is equally important (Galán 
et al., 2014; Oteros et al., 2019). For instance, a roof must satisfy a 
number of requirements: height of the station (10–15 m above ground, 
(Rojo et al., 2019)), no air flow obstructing objects in the near sur-
rounding, position of the instrument inlet (at least 1.5 m above the roof) 
and minimal distance from the edges, are the factors that may disqualify 
an otherwise optimal location. These requirements also depend on the 
purpose of the monitoring. For example, stations established for agri-
cultural applications could sample particles directly at the crop level. In 
urban conditions, a network reflecting the variability of pollen distri-
bution in a city may also require street-level locations (Hjort et al., 2015; 
Werchan et al., 2018). 

2.2.3. Urban bias of European aeroallergen network 
Over 80 % of the 639 EAN stations (about half of which are currently 

active) have been located in cities with population density exceeding 
100 inhabitants per km2 (Fig. 2). Only 29 sites represent regions with a 
population density of fewer than 10–50 people per km2, and only about 
15 of the rural stations are currently operational. This urban/rural dis-
balance has two reasons: (i) the Hirst trap needs a regular, usually 
weekly, change of the sticky tape and other maintenance, (ii) the urban 
pollen-sensitive population is the main user of the data. Consequently, 
the data have an urban bias, sometimes with a disproportionally large 
representation of pollen from ornamental plants, high anthropogenic 
stress on local flora, urban heat island effects (i.e., higher urban tem-
perature than in the surrounding countryside), polluted and often arti-
ficial soil, etc. 

Since the contribution of local vegetation to the air concentrations is 
significant, such bias is likely to cause substantial alterations in timing of 

the pollen season, the pollen features and allergenicity (Behrendt and 
Becker, 2001; Bosch-Cano et al., 2011; Katz et al., 2019). 

2.3. Hierarchical pollen network 

Relatively high cost of automatic devices, their continuous devel-
opment, and the necessity to homogenise their data with historical 
manual time series suggest that a hierarchical monitoring network can 
be an optimal solution. 

A hierarchical network would include a few reference sites, with 
extensive infrastructure to host high-end observations, experimental 
campaigns, tests, calibrations, and intercomparison campaigns. These 
sites should be representative for various conditions to ensure that the 
tested monitors can recognise a wide range of different pollen types and 
operate under diverse climatic conditions. 

Baseline stations equipped with automatic monitors would consti-
tute the bulk of the network. They will also include high-quality stations 
with long-term measurements of Hirst type. Those will be used to 
establish transfer functions between the Hirst-type measurements and 
the new time series from the automated monitors. 

There is an option of having many low-cost sites fitted with cheaper 
sensors, e.g., for measuring total-pollen, if a use case for such data can be 
found or some specific easily recognizable taxa will be of a particular 
interest. The “Hanakosan” network in Japan is based on such low-cost 
sensors (Kawashima et al., 2017) exploiting the feature of the Japa-
nese pollen season with one easily-identifiable pollen type seemingly 
dominating the allergy pattern. Due to complexity of the European 
pollen composition, such sensors, while tested (Tummon et al., 2021), 
were not adapted over the continent and this study does not consider 
this option. 

2.3.1. Reference sites and measurements 
A limited number of well-selected reference sites will aim to provide 

the best estimate of pollen (and, eventually, other biological aerosols) 
abundance and its associated uncertainty. Apart from routine moni-
toring and various campaigns, these sites will provide metrological 
references, in particular, ensuring traceability of the new measurements. 
Traceability, the key metrology concept behind the reference 

Fig. 1. Histogram of the length (years) of the time series from the European pollen and spores observations. Blue bars present European Aeroallergen Network (EAN) 
data with manual Hirst-type traps (see more from the EAN Web portal https://www.ean-net.org/en.html). Red bars show the length of timeseries of automatic 
networks. Totally 239 sites, which (i) were operational in 2022, (ii) have known starting date. Source: World pollen map database (Buters et al., 2018), the new URL: 
https://www.zaum-online.de/pollen/pollen-monitoring-map-of-the-world.html visited 29.12.2022. 

M. Sofiev et al.                                                                                                                                                                                                                                  

https://www.ean-net.org/en.html
https://www.zaum-online.de/pollen/pollen-monitoring-map-of-the-world.html


Science of the Total Environment 900 (2023) 165800

5

measurements, refers to the possibility of tracing a measurement value 
and its uncertainty back to a reference value (typically made using a 
defined measurement procedure that involves national or international 
standards) through a documented chain of calibrations quantifying the 
components of the measurement error. Establishing these components 
will be one of the tasks for the reference sites. 

Given the challenges related to observing bioaerosols, a multitude of 
instruments at the reference sites will allow for establishing a multi- 
instrument consensus about the actual concentrations of biogenic par-
ticles in the air. 

2.3.2. Criteria for reference station selection 
Beyond meeting the requirements for standard AutoPollen sites 

(Tummon et al., 2022), the reference stations should also meet as many 
of the following requirements as possible. 

2.3.2.1. Coverage of main European bioclimatic zones. The AutoPollen 
network needs to cover a variety of bioclimatic zones and biogeo-
graphical regions (ETC/BD, 2017), so that the measurement systems can 
be tested over the whole range of different environments and pollen 
taxa. 

2.3.2.2. Well-identifiable pollen season. The pollen season needs to be 
well-identifiable, with concentrations high enough for the relevant taxa 
in the specific bioclimatic zone (Pfaar et al., 2016). It is also preferable, 
albeit not mandatory, to have multi-annual records from Hirst-type traps 
available for each reference station. 

2.3.2.3. Multiple automatic instruments at the site. At least one automatic 
monitor and a Hirst-type trap should be installed at each reference site. 
Both instruments should be well-calibrated and regularly checked. 
Furthermore, a weather station should be located at or close to the site, 
providing observations of temperature, precipitation, wind direction 
and speed, solar radiation, as well as humidity with at least an hourly 
resolution. 

2.3.2.4. Instrument intercomparison. Space and infrastructure should be 
available to install additional instruments at the same location for the 
intercomparison experiments. Knowledgeable personnel should also be 
available to provide technical support on-site. 

2.3.2.5. Managing instrumentation changes. Changes in the instrumen-
tation, the instrument location, the surrounding micro-environment, the 
operating procedures, and the data processing algorithms can and will 

Fig. 2. Population density (2.5″ grid, ~3 × 4.6 km resolution) at the locations of the 639 active and historical sites of the European Aeroallergen Network. The 
middle of the colour bar corresponds to a city with ~20,000 inhabitants. Only violet dots characterize the rural conditions on the map. Source: Gridded Population of 
the World, version 4 (GPWv4, (CIESIN, 2016)). 
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occur during the lifetime of the network. Certain changes are punctual 
(e.g., algorithm changes), whereas others are more gradual (e.g., ur-
banization around a measurement site). Unnecessary changes should be 
avoided, whereas inevitable ones should be monitored, documented and 
analysed to ensure the integrity of long-term records (Aguilar et al., 
2003; WMO, 2020). 

2.3.2.6. Complementary monitoring. The reference sites should be 
located close to an automated meteorological station and preferably also 
close to an air quality monitoring station, or at least close to a PM10 
monitoring station (e.g., World Meteorological Organization Global 
Atmospheric Watch, WMO GAW, https://community.wmo.int/activity- 
areas/gaw, visited 20.12.2022, or Co-operative programme for moni-
toring and evaluation of the long-range transmission of air pollutants in 
Europe, EMEP, http://emep.int, visited 20.12.2022). Information from 
these stations is important to better understand the influence of weather 
or high non-pollen aerosol concentrations on the reference 
measurements. 

2.3.2.7. Reacting to environmental changes. Selecting the reference sites, 
one has to account for on-going climate change, reforestation processes 
in Europe, degradation of some regional environments, biodiversity 
trends, changes in agriculture practices and planted species, etc. The 
reference sites should be placed in locations that allow them to notice 
these changes at early stages, so that the main network can be timely 
adjusted accounting for the new sources and species. 

2.3.3. Selection of bioclimatic zones 
The reference sites are expensive, therefore establishing them in each 

of the 11 European bioclimatic zones (ETC/BD, 2017) will hardly be 
feasible. Luckily, comparing these zones with the maps of pollen 
occurrence (Skjøth et al., 2013), it becomes apparent that several zones 
have similar pollen profiles, i.e. can be represented with one site. At the 
same time, in some bioclimatic zones one can have regions that differ 
substantially in pollen timing and composition, i.e., a “similar-pollen 
zone” might be also smaller than a bioclimatic zone. 

At the top level, Atlantic/Continental/Boreal/Alpine bioclimatic 
zones can be differentiated from Mediterranean. These two large clus-
ters strongly differ in pollen and fungal spores composition and timing 
(Sofiev and Bergmann, 2013). At the next level, different abundance of 
individual pollen taxa in Atlantic/Continental/Boreal/Alpine cluster 
can be taken into account. Notably, there is less diversity in the Boreal 
and Alpine regions, which also warm faster than the rest of Europe, with 
potentially large impact on regional flora. A specific and important 
invasive plant is Ambrosia, which has the main distribution areas in the 
Pannonian zone in South-Eastern Europe and in steppe zone – those 
might require a dedicated high-end monitoring station. 

Maps of tree habitats in Europe can further help to locate the most 
important pollinating trees. Examples include the European Atlas of 
forest tree species (https://forest.jrc.ec.europa.eu/en/european-atlas, 
visited 20.12.2022), the European Forest Genetic Resources Programme 
(http://www.euforgen.org/species, visited 20.12.2022), or the Euro- 
Med PlantBase, a resource to visualise the different plant distributions 
across the Mediterranean (http://ww2.bgbm.org/EuroPlusMed/query. 
asp, visited 20.12.2022). 

2.3.4. Selection of reference site locations 
Representativity of any monitoring site is always important but for 

reference sites it is particularly vital to have its observations represen-
tative for at least regional scale (a few kilometres for hourly, tens of 
kilometres for daily values). The representativity of the site can be 
affected by numerous factors, including local topography, proximity of 
strong sources of pollen, large water bodies within few km distance 
(because of local circulations, such as sea breeze), etc. The roles of such 
factors should be estimated, documented, and minimized. 

Summarising the above considerations, we propose as a program- 
minimum to establish at least three reference sites, at least one in 
each of the three greater bioclimatic zones. At least one reference site 
should be in the Atlantic/Continental/Boreal region, in a location where 
preferably all the relevant pollen and fungal spore taxa of this region are 
present in sufficiently large amounts. A second reference site should be 
in the Mediterranean area, covering the main Mediterranean taxa. For 
Ambrosia and Artemisia, a third reference site should be selected in the 
Pannonian region. Consideration should be given to sites representing 
the southern and northern conditions as well. 

2.4. Practical examples of regional baseline networks 

Locations of baseline stations can be based on various selection 
procedures. As a practical example, the ePIN network followed a two- 
step approach, which established a dense network over Bavaria and 
subsequently used cluster analysis to group the redundant sites into 
clusters and obtain the new site locations (Oteros et al., 2019). 

The SwissPollen network was redesigned based on the local pollen 
load at the existing Swiss sites. A measurement site was considered 
representative for all points in space that show similar pollen load for 
the pollen taxa in the COSMO-ART dispersion model. With this, the 
spatial coverage of all individual measurement points was evaluated. 
The approach was developed during the automation of the Swiss pollen 
monitoring network: the existing network was evaluated using COSMO- 
ART predictions, and then, in an iterative process, the identified weak-
nesses in population and territorial coverage were addressed (Lieberherr 
et al. in prep.). 

3. Basic equations and tools for designing the network for direct 
usage of observations 

3.1. Target parameter for optimization: concentration field 

Observed time series of airborne pollen concentrations Co
(
xn, yn, t

)

across a network SN consisting of N stations 
{
sn
(
xn, yn

)
, n = 1..N

}
will 

be used to directly represent concentration distributions over the 
considered area C(x, y, t). Here, n is the index of the observation site, x 
and y are horizontal coordinates (e.g., longitude and latitude), and t is 
time. 

Restoring concentration fields directly from observations without a 
dispersion model implies spatial inter- and extrapolations performed for 
each time moment t. Concentration C(x, y, t) at an arbitrary point (x, y)
and time moment t is then a function F

(
Co

(
xn, yn, t

) )
of values observed 

at the stations at the same time moment. The specific form of the 
function is largely up to a developer's choice. It can be, for instance, 
taken as a linear combination of values observed at the stations: 

Cint(x, y, t) = F( Co(xn, yn, t) ) =
∑N

n=1
αn(x, y) Co(xn, yn, t) (1) 

Here coefficients αn are represented as a map of weights describing 
the assumed relation between the concentration at each station and at 
the point of interest (x, y). There are many ways to determine αn, which 
can be deterministic (e.g., interpolation splines or radial-based func-
tions) or geostatistical (e.g., kriging) (Böhner and Bechtel, 2018). The 
analysis below is based on the radial-based function RBF (Broomhead 
and Lowe, 1988), which have numerous practical applications and for 
which an efficient implementation exists in the SciPy Interpolate library 
of Python 3. Another possible option could be bicubic 2D interpolation 
B-spline ((Prautzsch et al., 2002), see also “spline interpolation” in the 
online Encyclopaedia of Mathematics of European Mathematical Soci-
ety, https://encyclopediaofmath.org/wiki/Main_Page). 
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3.2. Quantifying the network quality 

The ability of a network to reproduce the concentration field over the 
entire area of interest can be quantified via RMSE (Square Root of the 
Mean Square Error) between the “true” concentration field C(x, y, t) and 
Cint(x, y, t) reconstructed via interpolation of the network observations. 
Time-resolving RMSE, J(t), is simply: 

J2(t) =
1
A

∫∫

Ω

(C(x, y, t) − Cint(x, y, t) )2dx dy (2) 

Here Ω is the region of interest, 2D, with the area A. 
To obtain the final single value quantifying the network skills, 

integration over time (e.g., a full season) is needed, but it can be 
somewhat misleading because the process is not stationary. In many 
cases, one may be interested in a maximum error during the season of 
the considered taxon rather than in a year-round average: 

Jmean =
1
T

∫

T

J(t)dt, Jmax = max
T

(J(t) ) (3) 

The Eq. (2) requires knowledge of the “true” concentration field C, 
which can be estimated via two approaches. 

The first approach used for the ePIN network development included 
one year of operations of a dense network with station separations <30 
km homogeneously spread over Bavaria (Oteros et al., 2019). Assuming 
that this network is representative for the “true” concentration field, the 
integral in (2) turns into a sum over this dense network, JDN: 

J2
DN(t) =

1
MDN

∑MDN

i=1
(CDN(xDN(i) , yDN(i) ,t) − Cint(xDN(i) , yDN(i) ,t))

2 (4) 

Here, xDN(i), yDN(i) are coordinates of the sites of the dense network, 
MDN is the number of stations constituting it, and CDN is the concen-
tration observed at its stations. 

The dense-network approach, being tempting because of usage of 
actual observations, suffers from two drawbacks: (i) high cost and long 
time required for construction of the dense network and its operation 
over an extended period of time (one year, as in the case of ePIN, is an 
absolute minimum), (ii) an assumption that this dense network is, 
indeed, representative and the switch from the integral (2) over the 
whole region to the sum over this network (4) does not add large 
uncertainty. 

The second approach is to construct a numerical experiment using a 
pollen dispersion model. With such a model, one can simulate the pollen 
distribution Cmdl over the target region, thus creating a synthetic “true” 
distribution pattern. This pattern is sampled at the station locations 
generating synthetic observations, which will be the model predictions 
at the corresponding grid cells and for the corresponding times. The 
problem then becomes discrete, and the network quality criterion Jd can 
be written as follows: 

J2
d(k) =

1
nxny

∑nx

i=1

∑ny

j=1
(Cmdl(i, j, k) − Cint(i, j, k) )2 (5)  

Jd mean =
1
K

∑K

k=1
Jd(k), Jd max = max

K
(Jd(k) )

Here i, j are grid indices, k is time index, nxny are horizontal grid 
sizes, and K is the number of times in the model output. Note that error 
summation now goes over the whole domain, thus being a discrete 
representation of the integral (2). 

The J criteria are expressed in [pollen/m3] and need a reference 
scale to compare with. There may be several scales suitable for this 
purpose. Below, we shall use a root mean square model concentration. 
Setting the observations Cint to zero in (2)–(5) and adding a surrogate to 
the measurement uncertainty to avoid division by zero, one obtains 

normalizers W, WDN, Wd for the above criteria: 

(a) Norm for the general case (2) W2(t) = D2 +
1
A

∫∫

Ω

(C(x, y, t) )2dx dy  

(b) Norm for the dense network case (3) W2
DN(t)

= D2 +
1

MDN

∑MDN

i=1
(CDN(xDN(i) , yDN(i) ,t) , t))2 (6)  

(c) Norm for the discrete problem case (5) W2
d(k)

= D2 +
1

nxny

∑nx

i=1

∑ny

j=1
(Cmdl(i, j, k) )2 

Here D is measurement uncertainty, a constant, which becomes 
relevant for low concentrations when the second term approaches zero. 
The value of D should be close to the detection limit, so we take 10 
pollen m− 3 as its rough estimate. 

Normalising J, JDN, Jd with W, WDN, Wd, respectively, one obtains 
convenient dimensionless parameters J/W, JDN/WDN, Jd/Wd. They are 
equal to 0 for a perfect observational network and reach 1 when ob-
servations become essentially useless (the error is as large as in case of 
no observations at all). It can also exceed 1 for the cases when extrap-
olation of observations produces so large errors that zero-concentration 
hypothesis becomes preferable. 

The normalized scores of the eqs. (4)–(6) will be used in the analysis 
below, whereas the simulated pollen concentrations will be taken from 
the SILAM model. 

3.3. SILAM atmospheric composition model 

Model simulations presented in this paper have been performed with 
the System for Integrated modeLling of Atmospheric coMposition 
(SILAM; http://silam.fmi.fi, visited 25.10.2022). It is an offline global- 
to-local-scale chemistry transport model developed for evaluating at-
mospheric composition and air quality (Sofiev et al., 2015b), emergency 
decision support applications (Sofiev et al., 2006), source inversion 
problems (Sofiev, 2019; Vira and Sofiev, 2012), and analysis of obser-
vations (Meinander et al., 2020; Tarasova et al., 2007). Among the va-
riety of physical and chemical transformation modules of SILAM, this 
study uses the pollen source modules (Prank et al., 2013; Siljamo et al., 
2012; Sofiev et al., 2012, 2015a, 2017) as well as the basic dispersion 
and deposition modules (Kouznetsov and Sofiev, 2012; Sofiev, 2002; 
Sofiev et al., 2010). 

SILAM has been evaluated in a variety of regional and global studies 
showing robust performance (Brasseur et al., 2019; Huijnen et al., 2010; 
Kouznetsov et al., 2020; Petersen et al., 2019; Sofiev et al., 2015a, 2020; 
Xian et al., 2019). 

The model currently includes 12 types of bioaerosols: pollen of alder, 
birch, grass, olive, 5 groups of mugwort species (their pollen is indis-
tinguishable from Hirst-type slides but the flowering time and the dis-
tribution in Europe are drastically different), and ragweed, as well as 
hazel and aphids (small wind-transported insects) (Sofiev et al., 2012, 
2015a, 2017; Prank et al., 2013; Sofiev, 2016, 2019; Siljamo et al., 2012; 
Ritenberga et al., 2017). 

3.4. Footprint-based analysis 

A comparatively inexpensive way to evaluate a network's coverage is 
based on footprint computations. They can be made through adjoint 
dispersion modelling, which is a part of variational data assimilation 
cycles but also widely used for analysis of observational campaigns (Vira 
and Sofiev, 2012; Bocquet et al., 2015; Meinander et al., 2020; Ver-
iankaitė et al., 2010; Saarikoski et al., 2007). Formally speaking, adjoint 
computations go beyond the “observations-only” concept, but 
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comparatively low costs and substantial added value make them useful 
even for this case. 

A surface footprint of an observation is an area from where the 
sources will contribute to the observation if they emit pollen during the 
corresponding time. The footprint absolute value is proportional to the 
fraction of emitted amount reaching the station. Footprints, unlike 
backward trajectories, explicitly account for deposition processes, such 
as sedimentation and washout by precipitation. This method does not 
say whether the areas covered by the footprint did emit pollen at a 
specific time. However, no areas outside the footprint can affect the 
monitor (assuming a perfect model), which makes the footprint a handy 
tool for identifying regions not, or poorly, covered by a particular 
monitoring network. 

Footprints directly relate to the fraction of air reaching the moni-
toring device. Formally, the convolution of emission ξ, and the footprint 
absolute value φ* over space and time is equal to the mean concentra-
tion C at the monitor location during the period over which the obser-
vation is made: 
∑

τ

∑

I,J,K
φ*(io, jo, to, i, j, k, t) ξ(i, j, k, t) = Co(io, jo, to) (7) 

Here, Co(io, jo, to) is the concentration observed at a given height near 
the surface at the site location (io, jo) at a discrete time interval t0. The 
location and timing of the observations are used as input for the adjoint 
calculations of the footprint. 

In our analysis, the absolute values of the footprint are of little 
importance, the message comes from the difference of these values at 
different locations. The higher the footprint value is, the larger the 
contribution from the sources in the corresponding area to that specific 
observation. One can also consider a cut-off threshold for the footprint 
value, below which it is set to zero. It would remove areas with low 
contribution to the observations and reduce the total footprint area. For 
the cut footprint, the integral (7) will be lower than the observed value. 
One can require it to be, e.g., 90 % of the observed concentration, thus 
removing all regions contributing <10 % of the observations. 

It should be stressed that footprints have no connection to the 
probability of the source to contribute to the observation, despite the 
opposite “silent assumption” is quite widespread. Indeed, as seen from 
(7), all sources covered by the non-zero footprint will contribute to the 
observation. It is only the strength of their contribution that is controlled 
by the footprint value. 

4. Network design based on an existing proxy 

Designing a network using an existing “proxy” network as a starting 
point reduces the problem of selection of the station locations to finding 
an optimal combination of the existing sites. Additionally, the time se-
ries of the proxy network provide useful information on its character-
istics in the past. These additional pieces, albeit not rigorous from 
mathematical standpoint, allow for a simple pre-screening of potential 
solutions and can significantly simplify the computations. The proxy 
network is usually not dense, i.e., one cannot assume that it provides 
exhaustive information on the concentration field. 

This section suggests pre-screening steps, which identify the main 
strengths and weaknesses of the proxy network and show the directions 
of its improvement. The screening addresses general features of the 
proxy network and can therefore be combined with any of the above 
network quality criteria. 

4.1. Removing redundant sites in the existing network 

The first pre-screening step assesses the existing sites, identifies and 
removes the redundant ones. To do this, one requires several years of 
observations (ideally, it should be one full solar cycle, 11 years, but even 
2–3 years might be sufficient for the screening purposes) from all sites. 
Various methods can be applied to identify the stations reporting 

consistently similar values (redundant sites). This includes cluster 
analysis (Gehrig, 2019; Oteros et al., 2019; Rodríguez-Fernández et al., 
2022), correlation analysis, etc. 

A potential problem of this step is that it does not distinguish be-
tween informative sites delivering new information and outliers that 
appear to provide “unique” information for technical reasons or a non- 
representative site location. It is therefore important to manually iden-
tify and remove all outliers, specifically for each taxon, in the initial 
proxy network before starting the analysis. 

Removal of the redundant stations retains only sites that each 
contributed with substantially different time series in the past. The 
network of non-redundant stations may suffer from a lack of coverage: 
(i) the initial proxy network itself may have insufficient coverage, (ii) 
removal of the redundant sites may leave holes, which will no longer be 
covered. The coverage should be verified and, most probably, improved 
by adding extra sites. Since the number of non-redundant stations de-
pends on a similarity threshold applied in the clustering, it should be set 
so that the number of retained stations is smaller than the planned size of 
the final network. 

4.2. Checking the coverage of the non-redundant network 

The second pre-screening step is to assess the network coverage, e.g., 
by computing and summing-up cumulative season-long footprints for all 
sites. For pollen monitoring, two additional considerations simplify the 
problem. Pollen emission (unlike concentrations) at night is low, i.e., the 
area covered by a footprint at night is less relevant than that covered 
during day. One can apply a pollen release model (e.g., (Sofiev et al., 
2012; Zink et al., 2013)) as an additional scaling factor or even use a 
fixed diurnal profile, e.g. the one shown in Fig. 3. Since only a rough 
estimate is needed, such a simple profile may be sufficient for screening 
purposes. 

The second simplification is that the footprints are only computed for 
the flowering period and not an entire year, which decreases the 
computational costs and removes the impact of meteorological situa-
tions during extraneous seasons. 

These simplifications are quite well grounded for pollen but should 
not be applied if a network also targets, e.g., fungal spores that can be 
emitted at night and over most of the year. 

The computed footprints for all stations, when summed-up, should 
cover all potential source areas. If some areas are not covered, extra 
stations should be added. Their locations can be determined by running 
the pollen model in prediction (forward) mode using only the non- 
covered areas as sources. The simulated concentration fields will show 
the regions affected by these sources. 

Fig. 3. A simplified synthetic diurnal cycle of relative pollen emission as a 
function of local solar time. 
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4.3. Finalising the proxy-based network for direct usage of observations 

Having the screening steps completed, the final step in the proxy- 
based network design is a stepwise evaluation of the network quality 
criteria (6) while adding sites at places with insufficient coverage until 
the cost function reaches a pre-defined quality threshold or the number 
of sites reaches the maximum limit. 

Choosing the form of the cost functions (6), one should keep in mind 
that the proxy network is, in most cases, much sparser than a would-be 
dense network for the region. For instance, the pollen network in 
Bavaria had 5 stations (two operational by the start of ePIN), the ePIN 
dense network had 24 locations, and the final one has 8 automatic sites. 
It is therefore recommended to use synthetic model-based approach for 
evaluation of the network skills, i.e., discrete grid-based cost function Id 
(5) and the corresponding normalized criterion (6c). 

Selection of the network quality threshold is not a rigorous step. The 
normalized cost function should certainly be <1 (the no-observations 
case) but further refinement is needed. As one of possible approaches, 
the L-curve formalism (Hansen, 1992) would identify the number of 
stations above which the error only weakly decreases with additional 
sites. 

5. Example: constructing a national automatic pollen 
monitoring network for Germany based on an existing proxy 

This section presents an example analysis of the German Hirst-type 
pollen monitoring network for the needs of automatic monitoring. It 
includes the pre-screening steps followed by the formal assessment of 
quality of the non-redundant network and analysis of means of 
improving its skills. 

The pre-screening is performed using observations from years 
2010–2013 for eight different pollen and spore taxa: Alnus (in tables and 
figures referred to as ALNU), Alternaria (ALTE), Ambrosia (AMBR), 
Artemisia (ARTE), Betula (BETU), Cladosporium (CLAD), Corylus (CORY), 
and Poaceae (POAC). These pollen types were selected following the 
recommendations of the COST Action EUPOL (Sofiev and Bergmann, 
2013), with some types not included because of their low abundance in 
Germany (e.g., Olea). 

5.1. Redundancy test 

The redundancy test was started from ranking the sites with regard to 
their importance for health and climate-related applications. We built a 
metric that combines the population density around the site (within a 
radius of 35 km, a rough estimate of a size of a large city agglomerate) 
and the total length of available observations from 1974 to 2014. The 
sites were ranked according to each criterion, and the ranks for each site 
were summed up to obtain its final standing (see Table 1 for the ten most 
important stations, the entire table is shown in the Annex Table A.1). 
This approach and its thresholds have no rigorous justification, but they 

ensure that a station within a densely populated area is considered more 
important than a site located far from cities. Conversely, stations with 
very short datasets are considered less important than those with longer 
time series. 

A correlation analysis was applied to daily pollen concentrations, 
separately for each year, with the data completeness of at least 20 % of 
the year (73 days, including days with zero concentration). This 
threshold is quite loose, but (i) pollen observations are practically never 
done throughout a full year, (ii) it allowed for incorporation of more 
stations in the analysis with little impact on the robustness of the results: 
one does not need, e.g., an entire grass season to note that the stations 
are (not) correlated, 2.5 months is enough for that. Sensitivity tests were 
carried out using thresholds of 10 % and 30 % data availability, with a 
similar outcome. 

The Pearson correlation coefficient (r) was calculated for each pair of 
stations and pollen type to assess the similarity between the sites. A 
redundancy threshold of 0.85 was used since this value was previously 
found to be optimal when applying a similar analysis for the design of 
the ePIN network (Oteros et al., 2019). A minimum correlation coeffi-
cient of 0.85 was also determined as a threshold separating clusters of 
pollen stations for a mean of seven allergenic taxa of the Swiss pollen 
network (Gehrig, 2019). It also corresponds to the accuracy of the Hirst- 
type observations, with r2 ≅ 0.7 corresponding to ~30 % of uncertainty 
associated with the manual observations (Adamov et al., 2021; Oteros 
et al., 2017). As a result, sites with mutual correlations higher than 0.85 
were considered to duplicate each other. 

The stations were grouped into clusters around the most-important 
stations that correlated r > 0.85 with all other sites in the cluster. The 
cluster was then reduced, retaining only the highest-ranked station 
(Table 1 and Table A.1). The procedure was applied iteratively, i.e., only 
one cluster was reduced at a time, after which clustering was repeated. 

For example, for ragweed in 2010, the highest-ranked site is 
DEMUNC (Table 1), which does not correlate with any other site in the 
network. In contrast, the station DEBOCH, at rank 2 (Table 1) correlates 
with several stations, including DEBONN(r = 0.89), DEFLEN(0.90), 
DEMAGD(0.86), DEMUST(0.86), DENEST(0.89), DEPOTS(0.88), DER-
OST(0.91), DEVECH(0.87), and DEWANG(0.86). Therefore, these sta-
tions were all removed from the list, and the next round of pair-wise 
correlation clustering was performed. The loop was repeated until no 
station series correlated >0.85 to each other. The outcome of the pro-
cedure for 2010 is shown in Table A.2. 

The clustering reduction procedure was performed independently for 
each taxon (8 taxa) and year (4 years). For each year, the lists of non- 
redundant sites for each of the eight taxa were compared and the sta-
tions ranked according to the number of lists where they were present. 
These ranks were averaged over each of the 4 years, ending up with 40 
stations that were relevant for >2 taxa over the 2010–2013 period 
(Table 2, Fig. 4). Interestingly, only two sites were relevant for all 8 taxa 
for all 4 years, while 20 were important for 6 taxa. To evaluate the 
scores, a manual “common-sense-based” ranking was made selecting 20 

Table 1 
The 10 top-rank German stations sorted by the population density within a radius of ~35 km from each site and the length of available data from 1974 to 2014.   

dx=0.333333       

Site Population count 2005 Year obs. 1970-2014 Days observed 1970-2014 Rank population Rank years Sum of ranks Final rank 

DEMUNC 1360090 22 6507 6 8 14 1 
DEBOCH 1568150 21 4614 3 12 15 2 
DEBERL 1872870 20 5040 2 20 22 3 
DEHANN 386712 26 4320 28 3 31 4 
DEERLA 688240 21 3607 18 14 32 5 
DEDRES 446392 21 6105 25 10 35 6 
DEFREI 352737 23 6888 30 5 35 7 
DEGERL 1074500 19 2396 11 25 36 8 
DEMOEN 685401 20 5165 19 19 38 9 
DEDELM 224470 33 9743 39 1 40 10  
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Table 2 
Mean ranking of the sites that provided data for all years in the period 2010–2013. The a priori ranking follows those of Table 1 and Table A.1.  

Final site 
rank 

Site code Mean Nbr of taxa for which site is 
informative 

A-priori rank:  
Table A.1 

Final site 
rank 

Site code Mean Nbr of taxa for which site is 
informative 

A-priori rank:  
Table A.1 

1 DEMUNC  8  1  21 DEHAGE  5.75  12 
2 DEDELM  8  10  22 DESOES  5.5  55 
3 DENORD  7.25  53  23 DEKOEN  5.5  20 
4 DEKIEL  7.25  44  24 DEHEID  5.5  16 
5 DEBONN  7.25  13  25 DEGOET  5.5  24 
6 DEOBER  7  58  26 DEROST  5.25  21 
7 DEMOEN  7  9  27 DEGARZ  5.25  67 
8 DEMANN  7  32  28 DEAUKR  5.25  47 
9 DEBOCH  7  2  29 DEREIN  5  25 
10 DECHEM  6.75  18  30 DETREU  4.75  66 
11 DEWANG  6.5  31  31 DELIPP  4.75  15 
12 DEMUST  6.5  46  32 DENEUS  4.5  70 
13 DEDRES  6.5  6  33 DEVECH  4.25  52 
14 DEWEST  6.25  36  34 DEGREI  4.25  50 
15 DELOEW  6.25  17  35 DENEST  4  41 
16 DEFULD  6.25  38  36 DEJENA  4  27 
17 DEHANN  6  4  37 DEDREB  4  79 
18 DEFREI  6  7  38 DEFLEN  3.75  40 
19 DEBERL  6  3  39 DEPRER  3.25  72 
20 DEBER1  6  11  40 DEPOTS  2.25  14  

Fig. 4. Map of the final station rankings (Table 2) averaged over the period 2010–2013. The size of the dot and font of the site name are proportional to the number 
of taxa for which each site is important (Table 2). The colour coding follows the a-priori importance (Table 1, population and length of time series – the smaller rank 
denoted by dark violet, is for the most-important sites). 
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sites. It turned out that these 20 included most of the top 10 sites 
determined using the formal method, i.e., the user-defined and formally 
computed importance of the sites generally agree with each other. 

5.1.1. Outliers: unique sources of information or poorly established 
observations? 

Several sites appeared as outliers for one or several species. Argu-
ably, the most-specific outlier time series are shown by DEHANN, which 
correlated with the rest of the network only for grasses and birch. 
Several other stations manifested strongly different data for one or more 
taxa. An interesting picture was seen for ragweed: about half of the 
stations correlate very well with each other, whereas the other half do 
not correlate at all with any other site. No clear pattern of correlations 
was found, e.g., there was no evidence of Ambrosia being present in the 
south and not in the north. 

The root causes of poor correlation between the closely located sites 
or high correlation between distant stations, need to be studied sepa-
rately in each case. The above analysis assumed that the data in the EAN 
database for Germany did not contain significant errors. As such, any 
two sites differing from each other were considered informative 
regardless the distance between them. This explains a tendency in Fig. 4, 
where several pairs of sites were retained, despite they are located close 
to each other. Common sense suggests that one of them is redundant, but 
their time series are different enough to retain both in the network. If 
future quality assurance test proves that some time series are indeed of 
low quality, the redundancy tests need to be repeated with reduced 
datasets. 

5.1.2. Robustness of the site ranking 
The above procedure includes several assumptions and arbitrarily 

constants, which can influence the final site ranking. A series of addi-
tional tests have been performed to estimate and, wherever possible, 
reduce, the uncertainty of the final ranking. 

Variability was found to be substantial from one year to another. To 
reduce it, data from four sequential years, 2010–2013, were used and 
the rankings obtained individually for each year were averaged. 
Considering longer periods was not a reasonable possibility given the 
small number of sites with longer datasets. 

Pollen observations made predominantly over the season and 
sometimes with substantial periods of missing data. The impact of 
incomplete time series was investigated by testing three completeness 
thresholds: 10 %, 20 %, and 30 %, i.e., the necessity of having 36, 73, 
and 109 days of data each year. The final ranking for all thresholds was 
essentially the same (not shown). 

To further evaluate the robustness of the selection procedure, the key 
step was modified: the reduction of the correlated clusters was changed 

to the reduction of the largest cluster rather than the cluster containing 
the most important site. The differences turned out to be negligible. The 
proposed method can therefore be considered sufficiently robust. 

5.2. Network coverage 

For this step, the footprints of the 40 informative German sites 
(Table 2) were computed and summed over two months in spring, 
covering the extended birch season. The procedure of the analysis was 
the following:  

1. for each day 15.03.2014–15.05.2014, the footprint was calculated 
for the previous three days, including the day of the observation. The 
footprint map was saved at an hourly resolution;  

2. each hourly footprint was scaled with an assumed diurnal cycle of 
the birch pollen release (Fig. 3), i.e., the areas covered by the foot-
print during the night were removed and the diurnal sections were 
scaled up;  

3. the scaled hourly footprints were summed for each station and each 
day of observation, thus obtaining the total footprint per day and site 
(the result of this step is shown in Fig. 5);  

4. the station-day footprints were summed in different combinations:  
o for all observation times of each station: footprints of individual 

stations (Φstation)  
o for all observation times and all stations: footprint of the whole 

network (Φtotal)  
o for all observation times and all stations, each footprint was 

weighted with the observed pollen concentrations (if available) 
(Φweighted highlighted the footprints corresponding to the highest 
birch pollen loads in Germany in 2014, i.e., the areas that were the 
most productive). 

Sum of the individual station footprints over the 2014 season, for 
both uniformly scaled (Φtotal) and weighted footprints (Φweighted), shows 
that the network coverage in 2014 was not homogeneous in Germany 
(Fig. 6). A few areas (dark blobs) are covered excessively (see also the 
redundancy tests above), whereas some others (light-colour areas) have 
considerably lower footprint density. The coverage of sources outside 
Germany was also lower, except for the western part of Poland, whose 
birch sources affect the Eastern German sites and show up in the foot-
print map regularly. Large forests in Russia do not affect Germany on a 
regular basis, therefore the footprint density there is low. One can 
expect, however, that the existing sites in Eastern Germany will be able 
to observe episodic plumes if they reach the region. 

The weighted footprint map has a different pattern than the uniform 
one. As can be expected, it correlates with the map of birch productivity, 

Fig. 5. Footprints for two sequential days for the Berlin station (30.03–31.03.2014). Units are relative.  
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with two main forests in the northeast and northwest of the country 
being responsible for the bulk of the birch pollen load in 2014. 

The results presented above are for 2014; another year would likely 
show somewhat different patterns, especially when it comes to long- 
range transport episodes (section 7.2). 

5.2.1. Coverage of reduced network based on the Table 2 ranking 
To demonstrate the effect of removal of the redundant sites, the 

annual footprints for the period from 15.03 to 15.05.2014 were 
compared for the full network (all 40 sites, Fig. 6), as well as for the 20 
and 30 most-informative sites presented in Table 2, respectively (Fig. 7). 

Fig. 6. Sum of the station footprints over the 2014 birch pollen season: Φtotal (left-hand panel) and scaled with the observed concentrations: Φscaled (right- 
hand panel). 

Fig. 7. Sum of the station footprints over the 2014 birch pollen season. Only footprints of the 20 (left) and 30 (right) most informative sites were used. The upper row 
shows the total footprints, while the lower row shows the weighted footprints. 
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Comparing Fig. 6 and Fig. 7, one can see that the difference between 
the 30 best sites and the whole network is relatively small; the entire 
German territory is covered well, with small observational gaps in both 
cases. Probably, the only area for improvement is in the north-east and 
north-west of Bavaria, where new sites were installed as part of the ePIN 
automatic monitoring project. In contrast, for the 20 best sites, the 
coverage started to deteriorate, with the north-east of the country being 
relatively sparsely covered and the coverage being lower in general. This 
also includes areas adjacent to Germany, particularly in Poland and 
France. 

5.3. Quantifying the network fidelity for direct usage of observations 

The above screening procedures result in a non-redundant network 
and qualitatively showed its coverage. They also provided the site 
ranking, which can be used as a guideline for adding-removing the 
stations. This section demonstrates the quantitative assessment of the 
network fidelity following the formal procedure of Sections 4.2 and 5.3 
taking the cost function (5) - (6c) as the target criterion. 

To generate the synthetic concentration fields, SILAM was run for the 
year 2011 for 5 species (alder, birch, grass, mugwort, and ragweed), and 
its concentration maps (example for birch is in Fig. 8 panel a) were 
sampled at the station locations of the tested networks. The synthetic 
observations obtained from the sampling were inter− /extrapolated over 
the domain (Fig. 8 b) and compared with the SILAM predictions (Fig. 8 
c). The RMSE was computed following the Eqs. (5) - (6 c). 

An example of hourly fields in Fig. 8 illustrates the challenges of the 
reconstructing the fields from point observations when the spatial scale 
of variability of concentrations is shorter than the distance between the 
stations. Noteworthy, the example of Fig. 8 is for birch, which has 
comparatively smooth concentration patterns. Nevertheless, the pollen 
plumes create a pattern with much shorter scale of the spatial in-
homogeneity than the distance between the stations. In such situation, a 
plume can pass unnoticed between the stations, see, e.g., cloud around 
(52.5 N, 7.5E). Alternatively, if a small plume is accidentally observed 
by some site(s), it will be treated as a large-scale widespread phenom-
enon, just as a small cloud at (52.5 N, 13.4E) that contaminated the 
whole north-eastern part of the domain of Fig. 8. 

Considering the whole season (Fig. 9), the evolution of the interpo-
lation error Jd of eq. (5) in comparison with the season strength Wd of eq. 
(6c) shows that the network of 95 stations provides only a limited 
improvement compared to 20 well-selected non-redundant sites (panels 
a and b of Fig. 9, Fig. 10a). Usage of very few stations (e.g., 2) is counter- 
productive, the error is larger than would be in the case of no observa-
tions at all (Fig. 10a). With stations added one-by-one in the order of 
importance (Table 2), the network fidelity grows, but the improvement 

stalls after ~10 sites (small fluctuations of the curves is noise due to just 
one year considered). 

The turning points of the curves of Fig. 10 at ~10 stations reflect the 
separation of scales in the problem: (i) a regional season propagation is 
easy to catch – already 10 sites over Germany may be sufficient, (ii) 
small-scale variations driven by source area patchiness, meteorological 
variability (wind, rain, …) are much more difficult and require dense 
networks to represent. Relative importance of these two factors depends 
on source locations and features of plants. Thus, ragweed is easily 
observed by few sites because its main sources are remote, so that the 
pollen plumes are wide and smooth. 

Overall, the interpolation error is a substantial fraction of the signal 
itself, sometimes reaching or exceeding it (Fig. 9, Fig. 10). Particularly 
problematic are times at the beginning and at the end of the season when 
only part of the region is covered by pollen clouds, so that only few 
stations observe them (this explains strange dependency for alder – see 
section 7.5). This is the inevitable feature of the direct usage of obser-
vations for restoring the concentration pattern: it quickly (with ~10 
sites) provides a rough impression on the situation but for many taxa 
requires far too many sites (95 was not enough) to obtain the error below 
50 % of the signal itself. 

6. Discussion 

6.1. Selection of the target variable: concentration directly represented 
from the observations 

Selecting the target variable –concentration or emission – is a crucial 
step defining the purpose of the network, with several major 
consequences. 

A network designed for reproducing concentrations field can be used 
for direct monitoring given that the location and number of stations are 
sufficient to reproduce concentrations anywhere in the area of interest 
using inter/extrapolation techniques purely based on the observations 
(i.e., without usage of models). The downside is that the number of 
stations usually needs to be large to ensure reasonable results, which 
implies a costly dense network or cheap but reliable fully automatic 
sensors, which are not available today. 

6.2. Temporal and spatial patterns of concentrations and the site 
representativeness 

Intuitively, it is clear that relying just on spatial inter- or extrapola-
tion without accounting for dispersion processes would require a dense 
measurement network, mainly because pollen concentration fields are 
known to have sharp gradients (Siljamo et al., 2006; Sofiev, 2016; 

Fig. 8. Testing a network with 20 stations. Station locations and a concentration field obtained from SILAM (a); a field reconstructed from sampling of the SILAM 
field at the station locations (b); Panel c) shows the difference between the maps a) and b). 
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Veriankaitė et al., 2010; Vogel et al., 2008; Zink et al., 2013). A pollen 
monitoring network satisfying this criterion would probably be much 
denser than one can afford. 

It is also evident that for various pollen types, the homogeneity of the 
concentration pattern across the network is different. For example, 
spatial patterns are the most homogeneous for Betula and Poaceae, so the 
time series at different sites would correlate highly for these pollen types 
(Fig. 11). In contrast, Ambrosia pollen and Cladosporium spores have 
more varying patterns, so the data from different stations correlate 
worse. As a result, observations of, e.g., Betula, would require fewer 
stations than for Ambrosia. Interestingly, Betula is among the far- 
transported pollen types, which makes the concentration patterns 
smooth, but Poaceae pollen transport is predominantly local – but their 
sources are so widespread that the resulting concentration fields are also 
homogeneous. 

Furthermore, there are substantial differences between years. Even 
at the mean level (Fig. 11), 2013 was an extreme year since almost all 
species showed either the highest or the lowest correlation between the 
sites. 2010 was also unique, whereas 2011 and 2012 show similar spatial 
homogeneity. 

6.3. Network accuracy vs temporal resolution 

Automatic measurements are produced with a high temporal reso-
lution, therefore the above synthetic case used the hourly SILAM output 
fields. However, a vast majority of allergology-related recommendations 
are based on daily concentrations, on a seasonal pollen integral (a sum of 
daily-mean concentrations over a year), which are used for describing 
intensity of the pollen season. Similarly, most of agriculture and 
forestry-relevant parameters are also daily, weekly, or seasonal. This is 
partly historical: with data being daily/seasonal, formulating and eval-
uating criteria based on, e.g., hourly values, was not possible. The sit-
uation may change with automatic data becoming available, which 
raises the question: how much of the spatial representativeness error 
does one add when switching, e.g., from daily to hourly averaging? 

This question directly refers to the needed network density. The 
longer the acceptable averaging period, the larger the correlation dis-
tance for an individual station and the lower the number of stations 
required. The latter, however, reaches a minimum and no longer de-
creases as the averaging period increases beyond the synoptic variability 
period, approximately 3–4 days. 

The synthetic experiment quantifying the network fidelity allows a 
quick check of the effect. Averaging the SILAM hourly fields to the daily 

Fig. 9. Time series for the birch season strength Wd (t) and the interpolation error Jd (t) of eqs. (5), (6c) for the current German network of 95 stations (Panel a)), for 
20 important stations Table 2 (Panel b)), and normalized interpolation error Jd/Wd for the 20-station network, Panel c). 

Fig. 10. Dependence of the RMSE of the reconstructed field (Fig. 8) on the number of sampling stations and averaging period of concentration fields (panel a – 
hourly, panel b - daily). Mean over 2011. The panel b is discussed in section 7.3. 
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level and repeating the error calculations, one obtains that the impact of 
the change of the temporal resolution on the spatial representativeness 
error is within 10–20 % depending on taxon (compare the panels a and b 
of Fig. 10). 

6.4. The value of redundant stations in a network 

For designing a minimal network, removing redundant stations is 
reasonable to reduce the cost of the network. But it should be kept in 
mind that with this step, advantages of redundant measurements are 
lost. For example, it will not be possible to control the long-term stability 
or representativeness of the remaining non-correlated stations. With 
redundant stations, measured changes in the timing or intensity of the 

pollen season can be compared between the correlated stations. A sta-
tion with locally influenced changes that are not representative of a 
larger area can then be detected. 

Additionally, stations with high correlations in the short-term tem-
poral pattern during a single pollen season may show differences in the 
long-term development of the intensity of the seasons (Gehrig, 2019). 
With several similar stations, a mean state of the pollen season of a re-
gion can be described, and they can bring advantages in recording 
possible different future developments within this region. An additional 
benefit is that redundant stations can be used for filling measurement 
gaps due to the technical failures of an individual monitor. This is 
especially important when long-term changes are analysed. 

Fig. 11. Mean pairwise correlation coefficients for the four years and eight different taxa considered.  

Fig. 12. Panel a): SILAM daily mean Alnus pollen concentration on 1 March. Panel b): daily concentration field on 11 March restored from the sampling of the SILAM 
field with 95 stations. 
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6.5. Why the fidelity for Alnus is poor for the full network? 

As seen from Fig. 9 and Fig. 10, mean RMSE for Alnus behaves 
differently from those for other taxa: the full network of 95 stations 
turned out to be noticeably worse than, e.g., network of 20 stations. 
Seemingly counter-intuitive, this behaviour illustrates the problem of 
insufficient density of the network for direct usage of the observations. 

Fig. 12a shows that on 11 March, a small but dense Alnus pollen 
cloud passed over one station in the south-east of Germany. Since there 
were no sites to the east of this point, this cloud was not constrained and 
the interpolated field (Fig. 12b) showed the whole lower-right corner of 
the domain with high concentrations. Simultaneously, other small 
clouds were missed by all stations. Together, these false and missed 
plumes resulted in a very poor representation of the pattern. The 
problem shows up only for the full network because the 20 top-ranked 
sites do not include the problematic point, i.e., they miss this small 
cloud completely and avoid over-stating the episode. The issue again 
stresses the consideration above: local-scale phenomena cannot be 
captured within the concept of a direct usage of observations for 
restoring the concentration fields. 

7. Summary 

Responding to the three obectives of the study, a methodology of a 
network design for aerobiological automatic monitoring is discussed 
combining the rigorous principles of Section 4 and practically feasible 
techniques of Sections 3 and 5 (objective (i)). These techniques are 
organized in a multi-step practical procedure (objective (ii)), and its 
application is demonstrated for the example of the network of Germany 
(objective (iii)). 

The suggested procedure includes several steps. 
Step 1. Preparations. Configuration of an observational network is 

critically dependent on several a-priori characteristics, which has to be 
determined before starting the design: (i) the purpose of the monitoring 
and its protocol must be established based on the expected data usage, 
applications, key stakeholder needs, and available resources; (ii) exist-
ing observations must be quality-checked and cleaned from poorly 
performing and non-representative stations, (iii) from the network 
purpose, the quantitative criterion of its quality should be formulated, as 
well as its required threshold; (iv) all user- and technology- driven re-
strictions and additional constraints should be identified and 
formalized. 

The methodology shown in this paper follows the current nearly- 
consensus concept that the observations are directly used to represent 
the concentration fields and serve the data users. The corresponding 
network quality criterion is then the accuracy of reproduction of pollen 
concentrations anywhere in the target region by means of interpolation 
between the stations. The target function is the RMSE of the field ob-
tained from the station data interpolation in comparison with the true 
pattern. 

Step 2. Introduction of necessary simplifications. Due to computa-
tional limitations, all practical network design projects apply numerous 
simplifications reducing the problem dimension. A popular approach, 
also used in this study, is to use an existing “proxy” network, which is 
optimized for the given criterion. In the provided example for pollen/ 
spores network in Germany, an existing national network was used as a 
prominent starting point. 

Step 3. Analysis of the starting proxy network. The design procedure 
starts from pre-screening of the initial proxy-network: reduction via 
redundancy test followed by the site ranking and coverage evaluation. 
The output of this step is a non-redundant subset of the initial network. 

Step 4. Iterative network optimization. The step-by-step removal of 

least-informative sites using the ranking of the Step 3, and/or intro-
duction of additional stations improving the network skills leads to the 
final network setup. 

Analysis of the synthetic case showed a separation of scales in the 
pollen concentration patterns: (i) a regional season propagation is 
smooth and can be resolved by a few well-positioned sites, (ii) smaller- 
scale variations driven by source area patchiness and meteorological 
variability (wind, rain, …) require a far too dense network to resolve 
within the concept of the direct usage of observation data. 
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Appendix A 

A.1. Objectives of EUMETNET Autopollen programme with regard to the European pollen monitoring network 

Within the Autopollen Programme, the development of methodology and practical recommendations on the future automatic European pollen 
monitoring network is a responsibility of the Working Group 3. The related objectives, tasks, and the programme deliverables are as follows. 

Objective 3 
Suggest an optimal network configuration (number of sites, their location, etc.) and alternative, possibly more realistic, configurations and 

compare those to the optimal (e.g. in terms of costs, spatial coverage, etc.). Develop a description of how the quality of a network can be assessed 
(criteria, metrics, etc.). 

3.1 Set of criteria and metrics to quantitatively design and assess the AutoPollen network across Europe. 
3.2 Recommendation for an optimal network based on the selection criteria and current projects across Europe. 
3.3 Based on the existing observation network, develop a design for its extension across Europe to meet end-user needs (particularly numerical 

forecast models).  

Table A.1 
The relative importance of the station based on population within ~35 km from it and the length of the time series collected by 2015.   

dx = 0.333333      

Site population count 2005 Years obs. 1970–2014 Days observed 1970–2014 Rank population Rank years Sum of ranks Final rank 

DEMUNC 1,360,090 22 6507 6 8 14 1 
DEBOCH 1,568,150 21 4614 3 12 15 2 
DEBERL 1,872,870 20 5040 2 20 22 3 
DEHANN 386,712 26 4320 28 3 31 4 
DEERLA 688,240 21 3607 18 14 32 5 
DEDRES 446,392 21 6105 25 10 35 6 
DEFREI 352,737 23 6888 30 5 35 7 
DEGERL 1,074,500 19 2396 11 25 36 8 
DEMOEN 685,401 20 5165 19 19 38 9 
DEDELM 224,470 33 9743 39 1 40 10 
DEBER1 1,872,870 12 3043 1 41 42 11 
DEHAGE 1,076,120 15 2954 9 34 43 12 
DEBONN 930,525 16 3142 12 31 43 13 
DEPOTS 1,324,060 13 3318 8 38 46 14 
DELIPP 219,532 27 6617 44 2 46 15 
DEHEID 429,803 19 3124 26 23 49 16 
DELOEW 247,272 21 3362 35 17 52 17 
DECHEM 418,202 18 4477 27 26 53 18 
DEWLOG 224,470 21 4714 42 11 53 19 
DEKOEN 179,327 25 4079 51 4 55 20 
DEROST 226,096 17 4092 37 27 64 21 
DEBIED 1,360,090 5 1339 5 60 65 22 
DEAACH 636,941 11 1365 21 44 65 23 
DEGOET 167,491 21 3659 55 13 68 24 
DEREIN 844,631 7 1740 15 54 69 25 
DEKARL 527,091 11 1247 24 45 69 26 
DEJENA 171,132 21 3428 53 16 69 27 
DEFRAN 786,633 8 833 17 53 70 28 
DEHAMB 844,631 6 874 14 58 72 29 
DELUEB 199,495 19 2976 48 24 72 30 
DEWANG 164,513 21 3594 57 15 72 31 
DEMANN 849,626 5 1214 13 61 74 32 
DEBUXT 792,258 6 739 16 59 75 33 
DEBREM 543,429 8 1167 23 52 75 34 
DEMSTR 365,943 9 1291 29 47 76 35 
DEWEST 224,470 14 2785 41 36 77 36 
DEMAGD 198,259 17 3394 49 28 77 37 
DEFULD 128,036 22 6698 70 7 77 38 
DEBAMB 206,535 14 2054 45 37 82 39 
DEFLEN 147,030 20 3116 63 21 84 40 
DENEST 94,479.9 23 5161 78 6 84 41 
DEMOER 546,055 5 948 22 64 86 42 
DEMUNI 1,360,090 2 96 7 81 88 43 
DEKIEL 205,347 11 2211 46 42 88 44 
DEESSE 1,568,150 1 122 4 89 93 45 
DEMUST 151,596 15 3206 60 33 93 46 
DEAUKR 154,655 13 2383 59 40 99 47 
DEPINN 309,275 4 563 32 68 100 48 
DEDONA 223,882 6 876 43 57 100 49 
DEGREI 72,594.1 20 6138 82 18 100 50 
DEMUEN 1,076,120 1 100 10 91 101 51 
DEVECH 113,324 16 3516 72 29 101 52 
DENORD 11,904.2 22 3603 92 9 101 53 
DEZUSM 146,391 13 2665 64 39 103 54 

(continued on next page) 
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Table A.1 (continued )  

dx = 0.333333      

Site population count 2005 Years obs. 1970–2014 Days observed 1970–2014 Rank population Rank years Sum of ranks Final rank 

DESOES 167,692 8 2170 54 50 104 55 
DEERFU 148,856 11 1894 62 43 105 56 
DEKREU 161,292 9 1209 58 48 106 57 
DEOBER 52,122 19 4988 85 22 107 58 
DEOLDE 256,466 3 340 33 75 108 59 
DEBADE 176,919 6 893 52 56 108 60 
DEAAC1 636,941 1 105 20 90 110 61 
DELEMW 224,470 3 717 40 73 113 62 
DEGIES 249,832 2 195 34 80 114 63 
DEROSE 203,359 4 504 47 69 116 64 
DEBAYR 140,481 9 1092 68 49 117 65 
DETREU 70,433.1 14 3834 83 35 118 66 
DEGARZ 34,619.6 16 3294 89 30 119 67 
DEWARN 226,096 1 258 38 82 120 68 
DEWUER 242,345 1 179 36 86 122 69 
DENEUS 94,856.4 9 1827 77 46 123 70 
DEBRAU 323,647 1 60 31 93 124 71 
DEPRER 10,899.6 15 3590 93 32 125 72 
DEMARB 182,298 2 533 50 76 126 73 
DEWASS 149,722 4 167 61 72 133 74 
DESCHW 84,555.6 7 1365 79 55 134 75 
DECOTT 128,083 4 779 69 67 136 76 
DEGEES 125,002 5 572 71 65 136 77 
DETRIE 141,494 4 409 67 70 137 78 
DEDREB 95,062.8 5 1011 76 62 138 79 
DEBINZ 34,619.6 8 1290 88 51 139 80 
DEGRAF 165,978 1 168 56 87 143 81 
DEGAIS 113,233 4 318 73 71 144 82 
DEHOMB 142,176 2 245 66 79 145 83 
DEFREU 145,338 1 184 65 84 149 84 
DEBERC 54,528.8 5 466 84 66 150 85 
DETRAU 111,438 2 266 75 78 153 86 
DESYLT 14,517.9 5 976 91 63 154 87 
DESCHN 80,835.5 2 463 81 77 158 88 
DEBORK 51,509.7 3 406 86 74 160 89 
DEINZE 111,438 1 130 74 88 162 90 
DEGARM 80,835.5 1 190 80 83 163 91 
DEAMRU 14,517.9 1 184 90 85 175 92 
DEHDMM 43,492.9 1 92 87 92 179 93   

Table A.2 
List of informative sites for 2010.  

Taxon Informative stations 

ALNU DEAUKR DEBERL DEBOCH DEBONN DEDELM DEDRES DEERLA DEFLEN DEFREI DEGARZ DEHAGE DEHANN DEHEID DEJENA DEKIEL DELIPP DELUEB DEMOEN 
DEMUNC DENEST DENORD DEOBER DESCHN DEWANG DEWEST 

ALTE DEBER1 DEBIED DEBOCH DEBONN DECHEM DEDELM DEDRES DEERLA DEFULD DEGARM DEKIEL DELOEW DEMANN DEMOEN DEMUNC DEMUST DENORD DEOBER 
DESCHN DETREU DEVECH DEWANG DEWEST 

AMBR DEAUKR DEBER1 DEBERL DEBIED DEBOCH DECHEM DEDELM DEDREB DEDRES DEERLA DEFREI DEFULD DEGARZ DEGOET DEGREI DEHAGE DEHANN DEHEID 
DEKIEL DEKOEN DELIPP DELOEW DELUEB DEMANN DEMOEN DEMUNC DENEUS DENORD DEOBER DESCHN DESOES DETREU DEWEST DEWLOG DEZUSM 

ARTE DEAUKR DEBER1 DEBERL DEBIED DEBOCH DEBONN DECHEM DEDELM DEDREB DEDRES DEERLA DEFLEN DEFREI DEFULD DEGARZ DEGOET DEGREI DEHAGE 
DEHANN DEHEID DEJENA DEKIEL DEKOEN DELIPP DELOEW DELUEB DEMANN DEMOEN DEMUNC DEMUST DENEST DENEUS DENORD DEOBER DEPOTS DEPRER 
DEREIN DEROST DESCHN DESOES DETREU DEVECH DEWANG DEWEST DEWLOG DEZUSM 

BETU DEBERL DEBOCH DECHEM DEDELM DEDRES DEERLA DEFLEN DEFREI DEGOET DEHAGE DEHANN DEHEID DEJENA DEKIEL DEKOEN DELOEW DEMANN DEMOEN 
DEMUNC DEMUST DENEUS DEOBER DEPOTS DEPRER DEREIN DEROST DESOES DEVECH DEWANG DEWEST DEZUSM 

CLAD DEBIED DEBONN DECHEM DEDELM DEERLA DEFULD DEGARM DEKIEL DEMANN DEMOEN DEMUNC DEMUST DENORD DEOBER DEREIN DESCHN DEWANG DEWEST 
CORY DEAUKR DEBERL DEBOCH DEBONN DEDELM DEDRES DEERLA DEFLEN DEFREI DEGARM DEGARZ DEGOET DEHAGE DEHANN DEHEID DEKIEL DEKOEN DELUEB 

DEMANN DEMOEN DEMUNC DEMUST DENEST DENEUS DENORD DEPRER DESCHN DESYLT DETREU DEWEST 
POAC DEAUKR DEBER1 DEBERL DEBIED DEBOCH DEBONN DECHEM DEDELM DEDREB DEDRES DEERLA DEFLEN DEFREI DEGARM DEGARZ DEGOET DEHAGE DEHANN 

DEHEID DEJENA DEKIEL DEKOEN DELIPP DELOEW DELUEB DEMAGD DEMANN DEMOEN DEMUNC DEMUST DENEUS DENORD DEOBER DEROST DESCHN DESOES 
DETREU DEVECH DEWANG DEWEST DEWLOG DEZUSM  
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Ortega Jimenez, S., Ranta, H., Rantio-Lehtimäki, A., Svetlov, A., Veriankaite, L., 
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