INTERNATIONAL JOURNAL OF SPORT NUTRITION AND EXERCISE METABOLISM

New Zealand Blackcurrant Increases Post-Exercise Hypotension Following Sustained Moderate Intensity Exercise

Journal:	International Journal of Sport Nutrition & Exercise Metabolism
Manuscript ID	IJSNEM.2023-0014.R1
Manuscript Type:	Original Research
Keywords:	New Zealand blackcurrant, anthocyanins, post exercise hypotension, heart rate variability, fat oxidation

SCH	IOL	AR	ЛC	IE™
N	1an	usci	rip	ts

1 ABSTRACT

2	Previous observations demonstrate New Zealand blackcurrant (NZBC) extract to alter
3	cardiovascular responses at rest without prior exercise. However, the prolonged
4	effects of NZBC on blood pressure and heart rate variability (HRV) following
5	exercise are not known. Participants ($n15$ [5 women], age:31±9 yrs, VO _{2max} : 44±9
6	mL·kg ⁻¹ ·min ⁻¹) undertook a control condition of 2-hours of laying supine rest.
7	Subsequently, in a double-blind, placebo controlled, randomised cross-over design
8	participants completed 1-hour of treadmill exercise at 50% VO _{2max} followed by 2-
9	hour supine rest with blood pressure and HRV measurement following a 7-day intake
10	of NZBC and placebo (PLA). With NZBC, there was an increase in average fat
11	oxidation (NZBC: 0.24±0.11 vs. PLA: 0.17±0.11 g·min ⁻¹ , P=0.005), and larger high
12	frequency relative power during the exercise $(P=0.037)$. In the 2-hour rest period,
13	delta change for systolic pressure was larger with NZBC than placebo (Control vs
14	NZBC: -5.6±6.4, Control vs PLA: -3.5±6.0 mmHg, <i>P</i> =0.033), but was not different
15	for diastolic or mean arterial pressure. There were no alterations in HRV variabilities
16	during the 2-hours following the exercise with NZBC. A 7-day intake of NZBC
17	causes a larger post-exercise hypotension response in young, physically active men
18	and women following 1-hour of treadmill exercise at 50% VO_{2max} .
19	
20	KEYWORDS : New Zealand blackcurrant; anthocyanins; post exercise hypotension;
21	heart rate variability; fat oxidation

- 22
- 23
- 24
- 25

- 26 Abbreviations:
- 27 DBP Diastolic blood pressure
- 28 HRV Heart Rate Variability
- 29 MAP Mean arterial pressure
- 30 NZBC New Zealand Blackcurrant
- 31 PL Placebo
- 32 PPAR Peroxisome-proliferator activated receptor
- 33 RER Respiratory Exchange Ratio
- 34 SBP Systolic blood pressure
- 35 VO_{2max} maximal rate of oxygen uptake
- 36 _vVO_{2max} Velocity at rate of oxygen uptake
- 37

38 INTRODUCTION

- 39 Intake of New Zealand blackcurrant extract (NZBC) has been shown to increase
- 40 exercise performance (Cook et al. 2019; Braakhuis et al. 2020; Willems and Blacker
- 41 2022) and influence cardiovascular responses before (Willems et al. 2015; Cook et al.
- 42 2017a) and during exercise (Cook et al. 2017; Cook et al. 2021). Underpinning
- 43 mechanisms are likely a combination of vasodilation (Cook et al. 2017b; Cook et al.
- 44 2021), blood flow (Matsumoto et al. 2005) and increased endothelial nitric oxide
- 45 synthase (Xu et al. 2004) linked to the antioxidant and anti-inflammatory properties of
- 46 anthocyanins (Special et al. 2014) and metabolites (Keane et al. 2016).

48	Willems et al ((2015)) and Cook et al (2017a)) demonstrated NZBC increased	cardiac
----	-----------------	--------	--------------------	--------	-------------------------------	---------

- 49 output and decreased total peripheral resistance at rest without prior exercise in
- 50 trained individuals. Blackcurrant anthocyanins has also been observed to influence

51	cardiovascular function during exercise. For example, Matsumoto et al. (2005)
52	observed oxygenated haemoglobin in the trapezius to be higher with 2-weeks intake
53	of blackcurrant compared to a placebo during 30-minutes of typing. In addition,
54	maximal voluntary contractions (MVC) of the trapezius performed 3-minutes
55	following the typing, total haemoglobin was also higher. Furthermore, Cook et al.
56	(2017b) observed a 7-day intake of NZBC increased femoral artery diameter during a
57	120-second isometric contraction at 30% MVC of the knee extensors, with a
58	concomitant decrease in systolic, diastolic and mean atrial blood pressure. Further
59	observations demonstrate that the increased femoral artery diameter during the
60	isometric contraction following NZBC is dependent upon intake duration, with no
61	change from 1-day, but an increase following 4 and 7-days (Cook et al. 2021).
62	
63	Short-duration, localised cardiovascular effects following exercise with NZBC have
64	also been demonstrated. Following a 7-day intake in rock climbers, Fryer et al. (2020)
65	had participants complete 10 handgrip contractions at ~10% before a tourniquet
66	occlusion of the brachial artery. The study observed a 37% reduction in oxygen half-
67	time recovery in the <i>flexor digitorum profundus</i> demonstrating enhanced oxidative
68	capacity.
69	
70	All these alterations in cardiovascular function, blood flow or oxidative capacity
71	following NZBC intake have been made a few minutes during or following exercise.
72	To the authors knowledge there have been no moderate duration measurements of
73	cardiovascular responses following exercise with NZBC.

75 Exercise is associated reducing resting blood pressure. The duration and intensity of 76 exercise are important for eliciting prolonged cardiovascular responses following 77 exercise. For example, post-exercise hypotension (PEH) is clinically important due to 78 magnitude of change occurring, with mean systolic and diastolic pressures decreases 79 of 5 and 3 mmHg, respectively, lasting up to 24 hours (Carpio-Rivera et al. 2016). It 80 is caused by multiple physiological responses, including decreased peripheral 81 resistance, sympathetic activity, stroke volume and beta-androgenic receptors and 82 endothelial modulation (Perrier-Melo et al. 2021). It is possible that the influence of 83 NZBC induced vasodilation and blood flow would increase PEH. For example, 84 anthocyanin metabolites have been shown to influence vasoactive properties on 85 vascular smooth cells (Keane et al. 2016) and cause endothelium-dependent 86 relaxation of arteries (Bell et al. 2006). 87 88 Heart rate variability (HRV) provides non-invasive analysis on the autonomic

89 influences on the heart. The autonomic nervous system and the relationship between 90 sympathetic and parasympathetic branches and their subsequent contributions to 91 cardiac regulation following exercise with NZBC remain unknown. As sympathetic 92 activity is one mechanism of PEH, it is possible that alterations in blood pressure post 93 exercise by NZBC could be explained by HRV changes. Furthermore, anthocyanins 94 may attenuate cardiovascular disease risk through the mechanisms of regulation of 95 nuclear receptor peroxisome proliferator-activated receptor gamma (Scazzocchio et 96 al. 2011), modulation of nuclear factor-kB (NF-kb) (Stefano et al. 2015) and reducing 97 thrombotic risk (Santhakumar et al. 2013). In turn, there may also be effects of 98 anthocyanins on HRV due to cardiac sympathovagal balance shift toward

99	parasympathetic activity due to anthocyanin effects upon the microbiome-gut-brain
100	axis (Zong et al. 2023).
101	
102	To the authors knowledge there have been no studies examining the prolonged
103	cardiovascular responses following exercise with supplementation of NZBC.
104	Therefore, this study aimed to examine the blood pressure and HRV responses in
105	physically active men and women following 1-hour of moderate intensity treadmill
106	exercise following NZBC intake. It was hypothesized that there would be a larger
107	decrease in post-exercise blood pressure following intake of NZBC.
108	
109	METHODS
110	Study
111	The study was approved by the University of Worcester College of Business,
112	Psychology and Sport Research ethics panel (CBPS2122007), with procedures
113	conducted in accordance with the ethical principles outlined by the Declaration of
114	Helsinki (World Medical Association, 2013).
115	Participants
116	Fifteen physically active normotensive participants (5 women) volunteered and
117	provided written informed consent, with characteristics presented in Table 1.
118	Participants were health screened and were not smokers or used dietary supplements.
119	Experimental Design
120	A double blind, placebo controlled, crossover design was used, with participants
121	visiting the air-conditioned laboratory (20°C) four times, at the same time of day.
122	Participants abstained from strenuous exercise for 48-hours, alcohol 24-hours before
123	and products containing caffeine on the testing visit days.

124	During visit one, participants underwent screening and had their height (Harpenden
125	Wall Mounted Stadiometer, UK), body mass (Sartorius scales) and blood pressure
126	(Omron M5-I, Omron Healthcare Ltd, Milton Keynes, UK) measured (Table 1).
127	Subsequently, participants completed an incremental treadmill (HP COSMOS,
128	Groningen, Netherlands) protocol to 11 km·h ⁻¹ with expired gas measurement to
129	determine the linear relationship between running speed and VO ₂ . Participants then
130	completed another incremental intensity treadmill protocol to volitional exhaustion to
131	calculate VO_{2max} . After 20-minutes rest, participants performed a verification square
132	wave protocol, whereby an additional 10% speed added the velocity at VO_{2max}
133	(VVO $_{2max}$). Participants ran at this speed for as long as they could with continuous
134	expired gas measurement (Poole and Jones 2017).
135	In the second visit (control condition), participants rested on a massage plinth for 120-
136	minutes with automated blood pressure measurement on the right arm every 15-
137	minutes.
138	Visits three and four were proceeded by taking two 300 mg NZBC (CurraNZ®,
139	Health Currancy Ltd., Surrey, UK) or placebo (microcrystalline cellulose M102)
140	identical capsules for 6-days prior. For the 6-days, participants consumed one capsule
141	in the morning, and one in the evening, both times with food. On the day of testing
142	(i.e., day-7), participants were instructed to consume both capsules together, 2-hours
143	before arriving at the laboratory in the morning. Each NZBC capsule contained 105
144	mg of anthocyanins. Following randomisation, eight participants received the NZBC
145	condition on visit three. During the debrief of visit four, six participants correctly
146	guessed what experimental condition order they received (40%). There was a 14-day
147	washout between the experimental conditions.

148 During visits three and four, participants exercised on a treadmill for 60-minutes at

- 149 50% VO_{2max} with continuous measurement of expired gases (Cortex Metalyzer 3B,
- 150 Biophysik GmbH, Walter-Köhn-Str. 2d 04356, Leipzig, Germany) and analysis every
- 151 5-minutes by averaging the last 60s of breath-by-beath data. Carbohydrate and fat
- 152 oxidation were calculated using the stoichiometric equations by Jeukendrup and
- 153 Wallis (2005). Rating of perceived exertion (RPE Borg 6-20) was measured every
- 154 15-minutes. Following the exercise, participants rested on a massage plinth for 120-
- 155 minutes, with measurement of expired gases for the first 30-minutes and blood
- 156 pressure every 15-minutes. Participants consumed water *ad libitum*.

157 Incremental Intensity Walking and Running for Oxygen-speed Relationship

- 158 The incremental intensity treadmill protocol in visit one determined the relationship
- 159 between oxygen uptake and speed. Participants completed 4-minute stages starting at
- 160 5 km \cdot h⁻¹ and increased by 1 km \cdot h⁻¹ until the treadmill reached 11 km \cdot h⁻¹ with a 1%
- 161 incline. Expired gases were averaged for the last 60-seconds of each stage and
- 162 alongside the VO_{2max} and $_{v}VO_{2max}$, the running speed eliciting 50% VO_{2max} was
- 163 calculated using linear regression.
- 164

165 Maximal Intensity Treadmill Protocol and Verification of VO_{2max}

- 166 The test commenced at 7 km \cdot h⁻¹ for women and 8 km \cdot h⁻¹ for men and increased by 1
- 167 km·h⁻¹ every minute until volitional exhaustion. The square wave verification
- 168 protocol commenced with a 2-minute period at 7 km h⁻¹ and then abruptly increased
- 169 to 110% _VVO_{2max}. Participants had no temporal feedback during the protocols but
- 170 were verbally encouraged. A 15-breath average was used for the highest VO₂ obtained
- 171 in both protocols, with the verification stage used to confirm no increase in VO_2 ,

172	despite a higher intensity. There was no increase in VO ₂ obtained in 14 participants in
173	the verification stage (step: 44 \pm 9 vs. verification: 42 \pm 8 mL·kg ⁻¹ ·min ⁻¹ , <i>P</i> =0.011).
174	

175 Blood Pressure

- 176 Blood pressure was measured in accordance with methods from the British
- 177 Hypertension Society. Briefly, participants rested awake, breathing normally without
- 178 the use of music, books, or electronic devices on a massage plinth with the back rest
- angled to 45°. The cuff was placed around the upper arm approximately 2 cm above
- 180 the brachial artery and the artery indicator aligned. Two measurements were taken,
- 181 and the lowest systolic (SBP) and diastolic (DBP) pressure recorded. Mean arterial
- 182 pressure (MAP) was calculated by:

183 $MAP = DBP + [(SBP-DBP) \div 3]$

- 184 Heart Rate Variability
- 185 HRV during exercise and was recorded continuously using Actiheart 4 (CamNtech Ltd,
- 186 Cambridgeshire, UK) and analysed on computer software Kubios HRV Standard 3.4.0
- 187 (Kubios Oy, Kuopio, Finland). During the 60-minute exercise in visits three and four,
- 188 HRV was determined from 0-5, 10-15, 25-30, 40-45, and 55-60 minutes. For the 120-
- 189 minute rest, HRV was determined from 0-5, 10-15, 25-30, 40-45, 55-60, 70-75, 85-90,
- 190 100-105, and 115-120 minutes to avoid the blood pressure measurement.
- 191 The HRV included time-domain variables, frequency-domain variables, and overview
- 192 variables. The time-domain parameters were the SD of normal N-N intervals (SDNN)
- 193 and the root mean square difference of successive normal R-R intervals (RMSSD).
- 194 Frequency-domain parameters were the absolute and relative power of High Frequency
- 195 (HF, 0.15-0.40Hz) and Low Frequency (LF, 0.04-0.15Hz) band (APHF, RPHF, APLF,
- 196 RPLF), Total Power (TP) and the ratio of LF to HF (LF/HF). PNS Index, SNS Index,

197	and Stress Index were the overview variables analyzed. Beat correction was set to the
198	medium threshold to filter the ectopic beats. Fast Fourier transformation-based Welch's
199	periodogram was performed to calculate the HRV power spectrum.
200	
201	Statistical Analysis
202	Statistical analysis was conducted using SPSS 27.0 (IBM SPSS Statistics, Armonk,
203	NY: IBM Corp) and GraphPad 9.4.1 (GraphPad Software, San Diego, CA). Data
204	normality was assessed using Kolmogorov-Smirnov test. Variables were analysed for
205	condition (i.e., NZBC vs. PLA vs. Control), time and interaction effects by a two-way
206	repeated measures ANOVA. Repeated measurements were checked for sphericity
207	using Mauchly's test and if sphericity was violated, Greenhouse-Geisser correction
208	applied. Where differences occurred, subsequent pairwise post hoc comparisons were
209	undertaken. Natural logarithm transformation (Ln) was performed on skewed
210	distributed HRV variables before analysis. Delta change (Δ) for the 120-minute
211	average blood pressure changes was also calculated for NZBC and PLA against the
212	control condition. Cohen's d effect sizes were calculated (Cohen 1998) with an effect
213	size of <0.2 reported as trivial, 0.2-0.49 as small, 0.5-0.69 as moderate and \geq 0.8 as
214	large. Data is presented as mean ± standard deviation.
215	

216 **RESULTS**

217 Metabolic Responses during Exercise and Recovery

218 Data is analysed from *n*14 due to loss of signal of one participant. Participants

- 219 exercised on the treadmill at 6.9±1.1 km ·h⁻¹. During exercise there was no time,
- 220 condition, or interaction effects for absolute and relative VO₂, relative intensity,
- economy, VCO₂ and heart rate (P>0.05). Minute ventilation demonstrated a time

- effect (P<0.001), with no condition or interaction effects (Table 2). RPE demonstrated a time effect (P<0.001), with no condition or interaction effect.
- 224

225 Fut onitation during entereise demonstrated a time (1 0.005) and contation enter	225 Fat	t oxidation	during e	exercise of	lemonstrat	ed a time	e(P=0.00))3) and	condition	eff	ect
--	---------	-------------	----------	-------------	------------	-----------	-----------	---------	-----------	-----	-----

- 226 (P=0.005) with no interaction effect (P=0.755). Pairwise comparisons indicate
- 227 differences at 5, (P=0.050, d=0.46), 10 (P=0.008, d=0.81) 15 (P=0.019, d=0.82), 20
- 228 (P=0.001, d=0.84), 25 (P=0.032, d=0.56), 30 (P=0.007, d=0.64), 35 (P=0.004,
- 229 d=0.63), 55 (P=0.048 d=0.68) and 60 (P=0.044, d=0.50) minutes where fat oxidation
- 230 was higher with NZBC. In addition, average fat oxidation for the 60-minutes was
- 231 higher with NZBC (NZBC: 0.24±0.11 vs. PLA: 0.17±0.11 g·min⁻¹, P=0.005, d=0.67),
- with *n*13 demonstrating an increase. Carbohydrate oxidation also demonstrated a time
- 233 (P=0.002) and condition effect, (P=0.028), with no interaction effect (P=0.882).
- 234 Pairwise comparisons indicated carbohydrate oxidation with NZBC was lower at 20
- 235 (P=0.008, d=0.34) and 45 minutes (P=0.030, d=0.29). Average carbohydrate
- 236 oxidation was lower with NZBC (NZBC: 1.39±0.42 vs. PLA: 1.50±0.48 g·min⁻¹,
- 237 P=0.027, d=0.25). Correspondingly, RER demonstrated a time (P<0.001) and
- condition effect (P < 0.001) but no interaction effect (P = 0.134). The pairwise
- 239 comparisons indicate differences at 5 (*P*=0.029, *d*=0.65), 10 (*P*=0.042, *d*=0.69), 15

```
240 (P=0.048, d=0.71), 20 (P=0.027, d=0.75), 25 (P=0.003, d=0.89), 30 (P=0.029,
```

- 241 *d*=0.45), 35 (*P*=0.004, *d*=0.76) 50 (*P*=0.007, *d*=0.013) and 60 minutes (*P*<0.001,
- 242 *d*=0.74) (Table 2).
- 243
- 244 During the 30-minute recovery, there was no condition or interaction effects (*P*>0.05)
- for absolute and relative VO₂, VCO₂, heart rate, minute ventilation, RER, fat
- 246 oxidation, carbohydrate oxidation and energy expenditure (Supplemental Table 1).

- Time effects were observed for absolute VO_2 (*P*=0.001), relative VO_2 (*P*=0.002),
- 248 VCO₂ (*P*<0.001), heart rate (*P*<0.001), RER (*P*<0.001), minute ventilation (*P*<0.001),
- fat oxidation (P < 0.001) and carbohydrate oxidation (P < 0.001).
- 250
- 251 Recovery Blood Pressure Responses
- 252 Resting before the exercise there was no differences between conditions for SBP
- 253 (Control:113±11, NZBC: 115±13, PLA: 117±12 mmHg, *P*>0.05), DBP (Control:
- 254 69±7, NZBC: 72±5, PLA: 71±6 mmHg, *P*>0.05) and MAP (Control: 84±7, NZBC:
- 255 86±6, PLA: 87±6 mmHg, *P*>0.05).
- 256

257 For the 120-minute blood pressure measurements, systolic blood pressure demonstrated 258 a time (P=0.002), condition (P=0.002) and interaction effect (P=0.040). At 60-minutes, 259 control was different to NZBC (P < 0.001, d=0.62) and placebo (P=0.030, d=0.26), with 260 NZBC also lower than placebo (P < 0.001, d = 0.34). At 75-minutes, control was different 261 to NZBC (P < 0.001, d = 0.66) and placebo (P = 0.033, d = 0.47). At 90-minutes, control was different to NZBC (P<0.001, d=0.94). At 105-minutes, control was different to 262 263 NZBC (P=0.002, d=0.79) and placebo (P<0.001, d=0.69). At 120-minutes, control was 264 different to NZBC (P=0.010, d=0.63). Delta change for systolic pressure was larger 265 following NZBC than placebo (Control vs NZBC: -5.6±6.4, Control vs PLA: -3.5±6.0 266 mmHg, *P*=0.033, *d*=0.34,).

267

Diastolic blood pressure was not different for the conditions (P>0.05) but was different across time (P=0.008) with no interaction effect (P>0.05). There was also no difference in delta change for diastolic pressure (Control vs NZBC: -1.6±5.1, Control vs PLA: -0.3±7.0 mmHg, P=0.119). Mean arterial pressure demonstrated no condition effect

272	(P >0.05) but did have a time effect (P <0.001) and an interaction effect (P =0.043). At
273	75-minutes, there a was a difference between the conditions ($P=0.017$), with NZBC
274	lower than the control condition ($P=0.010$, $d=0.57$) and the placebo ($P=0.044$, $d=0.36$).
275	At 90-minutes there a was a difference between the conditions ($P=0.022$) with NZBC
276	lower than the control ($P=0.007$, $d=0.69$). At 120-minutes there was a strong trend for
277	a difference between the conditions ($P=0.054$), with NZBC lower than control
278	($P=0.039$, $d=0.58$). Delta change had a trend to be different between the conditions
279	(Control vs NZBC: -2.7±4.6, Control vs PLA: -0.9±5.7 mmHg, <i>P</i> =0.052, <i>d</i> =0.36).
280	
281	Heart Rate Variability
282	During exercise high frequency relative power was different between NZBC and
283	placebo (Table 3) ($P=0.037$), with high frequency relative power larger following
284	NZBC than PLA at 40-45 minutes ($P=0.030$, $d=1.10$). There were responses over
285	time for all variables, ($P < 0.05$), however, there was no interactions ($P > 0.05$).
286	Analysed data is from n10 due to signal loss from five participants.
287	
288	During the recovery period, there was a time response for all the HRV variables
289	(P <0.05), except the low frequency relative power (P =0.217) (Supplemental Table 2).
290	There was no effect condition or interaction effects or for all frequency-domain, time-
291	domain, and overview variables (P>0.05). Analysed data is from n10 due to signal
292	loss from four participants.
293	
294	DISCUSSION
295	This study observed that blood pressure decrements after 60-minutes of treadmill
296	exercise at 50% VO_{2max} were larger following 7-days of intake of New Zealand

207	D1 1 / / /	- ,	1 1 .	1 1/1	1 · 11	
297	Blackcurrant extract in	comparison to	placebo in	healthy, j	physically a	ictive men and

women. This was also observed alongside an increase in fat oxidation and decrease in

299 carbohydrate oxidation during the 60-minutes of exercise.

300

301 *Fat Oxidation*

The increase in fat oxidation during exercise following NZBC in the present study 302 303 supports previous observations (Cook et al. 2015; Cook et al. 2017c; Stauss et al. 304 2018; Hiles et al. 2020; Şahin et al. 2021; Şahin et al. 2022; Willems et al. 2022). This 305 study observed an increase in the average fat oxidation of 0.07 g·min⁻¹ following 306 NZBC which is similar in absolute increases found by Hiles et al. (2020) of 0.12 307 g.min⁻¹, Cook et al. (2015) 0.05 g.min⁻¹ and Cook et al. (2017) 0.11 g.min⁻¹. The 308 increase in fat oxidation observed in this study was completed in untrained men and 309 women during treadmill exercise at 50% VO_{2max} and builds upon previous 310 observations that have used trained individuals, where there would be expected 311 adaptations to increase fat oxidation during exercise. The mechanisms for the altered 312 substrate utilisation are not fully known, however, it is possible the blackcurrant 313 anthocyanins may have effects upon fat metabolism. For example, blackcurrant 314 anthocyanins have been shown to increase mRNA of genes involved with energy 315 expenditure including peroxisome proliferator-activated receptor alpha (PPAR) in 316 C57BL/6J mice (Benn et al. 2014). 317

318 The increase in fat oxidation within this study is a strength as it replicates previous

319 findings and demonstrates that the observations of altered blood pressure post-

320 exercise are also likely a result of the NZBC. Furthermore, this study also adds novel

321 metabolic observations during the 30-minutes following exercise. Interestingly, the

322	metabolic changes observed during exercise with NZBC is not continued during the
323	immediate recovery. The relative VO_2 and RER demonstrated time responses within
324	the 30-minute recovery, with both decreasing following the exercise. This is similar to
325	Kuo et al. (2005); however, they demonstrated that the downward trend for RER
326	plateaus at 60-180 minutes following moderate intensity exercise with values lower
327	than before the exercise. Therefore, it is possible that changes with NZBC may be
328	observed at a later duration, rather than during the first 30-minutes of recovery. A
329	limitation to the present study is also that pre-exercise RER was not measured, as a
330	result, the pre to post exercise comparisons in RER and fat oxidation cannot be made.
331	
332	Blood Pressure Responses and Heart Rate Variability
333	To the authors knowledge, this is the first study to demonstrate a larger decrease in
334	blood pressure with NZBC in comparison to placebo following exercise. It also
335	supports previous observations of alterations in cardiovascular function with NZBC
336	(Willems et al. 2015; Cook et al. 2017a).
337	
338	A key consideration when interpreting the findings from this study is that
339	comparisons of post exercise blood pressure were compared to a control condition of
340	no exercise (Figure 1). With the blood pressure measurements following exercise in
341	the NZBC and placebo conditions, there are lots of degrees of freedom, but also
342	comparisons under different conditions, such as rest without prior exercise and rest
343	following exercise. Including a control condition is a strength as it indicates the
344	exercise was sufficient to elicit post exercise hypotension. Furthermore, it also
345	demonstrates that NZBC increases the extent of post-exercise hypotension beyond the

346 post-exercise hypotension observed following the placebo.

348	This study measured resting blood pressure in all visits, with the placebo and NZBC
349	measurement made before the exercise. This is another strength as it provided
350	refamiliarisation and also demonstrated that there was no difference in resting blood
351	pressure between the conditions. This was an important measure as post-exercise
352	blood pressure is influenced by the pre-exercise value, where an inflated pre-value
353	could overestimate the extent of post-exercise hypotension (Carpio-Rivera et al.
354	2016). Therefore, this gives further demonstration of post-exercise hypotension.
355	
356	In the present study, NZBC decreased systolic blood pressure by 5.6 mmHg in the 2-
357	hours following exercise. This is clinically relevant because a reduction of 3 mmHg in
358	systolic pressure is associated with a 5% reduction in mortality due to cardiovascular
359	disease (Whelton et al. 2002). Furthermore, it is similar to the 5.3 mmHg systolic
360	pressure decrease observed 6-hours following moderate-intensity aerobic exercise in
361	obese individuals by de Lima Bezerra et al (2019) following beetroot juice intake.
362	
363	Future research should examine the post-exercise hypotension response with NZBC
364	to identify mechanisms for the response. In vitro studies have demonstrated that the
365	anthocyanin cyanidin-3-glucoside can increase the gene expression of nitric oxide
366	synthase (Xu et al. 2004) and enter vascular endothelia smooth cells (Ziberna et al.
367	2012). In addition, using anthocyanin metabolites in vitro have also shown migration
368	of vascular smooth cells (Keane et al. 2016). Therefore, it is possible that the
369	anthocyanins from the NZBC increased nitric oxide availability and it turn,
370	vasorelaxation of peripheral arteries.
371	

1.

1 1

16

372	The observations from the HRV, however, do not indicate blood pressure changes
373	were caused by alterations in cardiovascular activity (Table 5). To the authors
374	knowledge, this is the first study to measure HRV following NZBC intake. This was
375	completed during exercise and immediately post at rest, and this study found high
376	frequency relative power during exercise with NZBC was larger (Table 3), and low
377	frequency relative power not to change over time during recovery, regardless of
378	condition (Supplement Table 2). Changes in the high frequency band during exercise
379	would suggest alterations in the parasympathetic nervous system. The increase in this
380	study could not solely be interpreted by the increased activation of the
381	parasympathetic nervous system as it can also be influenced by respiratory behaviour
382	(Bae et al. 2021). Furthermore, this study did not observe any changes in RMSSD
383	alongside the high frequency changes, which would have suggested a vagally
384	mediated change in HRV (Shaffer et al. 2017). Future studies should therefore
385	examine the relationship of NZBC, breathing frequency and HRV.
386	

TIDIA 1

387 Limitations

- ---

Recovery was performed in a seated position on a massage plinth, which is an 388 389 uncommon method to recover from exercise. Therefore, future research is needed to 390 examine the effects of NZBC on post-exercise hypotension in free-living conditions. 391 Furthermore, blood pressure was recorded in this study for 120-minutes following the 392 exercise and the longer-term effects are not known. For example, reductions in blood 393 pressure have been observed 12.7 hours following exercise in hypertensive 394 individuals (Pescatello et al. 1991) and it is not known if the effects of NZBC on post-395 exercise hypotension extend to this duration. Furthermore, future experiments 396 examining cardiovascular responses with NZBC should use dietary control, because it

- 1	_
	· /

397	cannot be ruled out that alterations in nitrate (Bailey et al. 2009) or sodium intake
398	influenced blood pressure (Huang et al. 2020).

400 *Conclusions*

- 401 A 7-day intake of New Zealand Blackcurrant extract increased post-exercise
- 402 hypotension in comparison to a placebo in the 120-minutes following 60-minutes of
- 403 treadmill exercise at 50%VO_{2max} in physically active men and women. There was also
- 404 an increase in fat oxidation and decrease in carbohydrate oxidation rate during the
- 405 exercise, however there was no effect in the immediate 30-minute recovery. There
- 406 was larger high frequency relative power during exercise with New Zealand
- 407 Blackcurrant but no effect upon heart rate variability during the recovery.
- 408

409 *Author contributions*

- 410 MDC conceived and planned the experiments. YS and RW carried out the
- 411 experiments. MDC and YS undertook data analysis. MDC and YS wrote the
- 412 manuscript.
- 413

414 Acknowledgement

- 415 Supply of supplement (CurraNZTM) for this study was obtained from Health Currancy
- 416 Ltd (United Kingdom) but had no role in any aspect of the study and manuscript.
- 417 Experiments were performed in the School of Sport and Exercise Science at the
- 418 University of Worcester (UK). YS and Ruiqi Wang (RW) were supported for this
- 419 study by the China Scholarship Council. The authors would like to acknowledge RW
- 420 for assistance in data collection.
- 421

422	Data Availability	
423	Data is available for research purpose upon reasonable request to the corresponding	
424	author.	
425	Conflict of interest	
426	The authors report there are no competing interests to declare.	
427		
428	REFERENCES	
429	1. Bae, D., Matthews, J. J. L., Chen, J. J., Mah, L. (2021). Increased exhalation	
430	to inhalation ratio during breathing enhances high-frequency heart rate	
431	variability in healthy adults. <i>Psychophysiology</i> , 58(11), e13905.	
432	2. Bailey, S.J., Winyard, P., Vanhatalo, A., Blackwell, J.R., Dimenna, F.J.,	
433	Wilkerson, D.P., Tarr, J., Benjamin, N., Jones, A.M. (2009). Dietary nitrate	
434	supplementation reduces the O2 cost of low-intensity exercise and enhances	
435	tolerance to high-intensity exercise in humans. Journal of Applied Physiology,	
436	(1985).107(4):1144-55.	
437	3. Bell, D.R., Gochenaur, K. (2006). Direct vasoactive and vasoprotective	
438	properties of anthocyanin-rich extracts. Journal of Applied Physiology,	
439	100(4):1164-70.	
440	4. Benn, T., Kim, B., Park, Y.K., Wegner, C.J., Harness, E., Nam, T.G., Kim,	
441	D.O., Lee, J.S., Lee, J.Y. (2014) Polyphenol-rich blackcurrant extract prevents	
442	inflammation in diet-induced obese mice. The Journal of Nutrional	
443	Biochemistry. 25:1019–1025	
444	5. Braakhuis, A.J., Somerville, V.X., Hurst, R.D. (2020). The effect of New	
445	Zealand blackcurrant on sport performance and related biomarkers: a	
446	systematic review and meta-analysis. Journal of the International Society of	

447		Sports Nutrition, 27;17(1):25. Erratum in: Journal of the International Society
448		of Sports Nutrition, (2021) Jan 12;18(1):8.
449	6.	Carpio-Rivera, E., Moncada-Jimenez, J., Salazar-Rojas, W., Solera-Herrera,
450		A. (2016) Acute effects of exercise on blood pressure: A Meta-analytic
451		investigation. Arquivos Brasileiros de Cardiologia, 106: 422-433
452	7.	Cohen, J. (1998). Statistical Power Analysis for the Behavioral Sciences, 2nd
453		ed.; Erlbaum Associates: Hillsdale, MI, USA
454	8.	Cook, M.D., Dunne, A., Bosworth, M., Willems, M.E.T. (2021). Effect of
455		Intake Duration of Anthocyanin-Rich New Zealand Blackcurrant Extract on
456		Cardiovascular Responses and Femoral Artery Diameter during Sustained
457		Submaximal Isometric Contraction. Journal of Dietary Supplements, 11:1-13.
458	9.	Cook, M.D., Myers, S.D., Blacker, S.D., Willems, M.E. (2015). New Zealand
459		blackcurrant extract improves cycling performance and fat oxidation in
460		cyclists. European Journal of Applied Physiology, 115(11):2357-65.
461	10.	Cook, M.D., Myers, S.D., Gault, M.L., Edwards, V.C., Willems, M.E. (2017a)
462		Cardiovascular function during supine rest in endurance-trained males with
463		New Zealand blackcurrant: a dose-response study. European Journal of
464		Applied Physiology,117(2):247-254.
465	11.	Cook, M.D., Myers, S.D., Gault, M.L., Edwards, V.C., Willems, M.E.T
466		(2017c). Dose effects of New Zealand blackcurrant on substrate oxidation and
467		physiological responses during prolonged cycling. European Journal of
468		Applied Physiology, 117(6):1207-1216.
469	12.	Cook, M.D., Myers, S.D., Gault, M.L., Willems, M.E.T (2017b). Blackcurrant
470		Alters Physiological Responses and Femoral Artery Diameter during
471		Sustained Isometric Contraction. Nutrients, 29;9(6):556.

472	13. Cook, M.D., Willems, M.E.T. (2019). Dietary Anthocyanins: A Review of the
473	Exercise Performance Effects and Related Physiological Responses.
474	International Journal of Sports Nutrition and Exercise Metabolism,
475	1;29(3):322-330.
476	14. de Lima Bezerra, Á.D., Costa, E.C., Pacheco, D.A., Souza, D.C., Farias-
477	Junior, L.F., Ritti-Dia, R.M., Grigolo, G.B., de Bittencourt Júnior, P.I.H.,
478	Krause. M., Fayh, A.P.T. (2019). Effect of Acute Dietary Nitrate
479	Supplementation on the Post-Exercise Ambulatory Blood Pressure in Obese
480	Males: A Randomized, Controlled, Crossover Trial. Journal of Sports Science
481	and Medicine, 11;18(1):118-127
482	15. Fryer, S., Giles, D., Bird, E., Stone, K., Paterson, C., Baláš, J., Willems,
483	M.E.T., Potter, J.A., Perkins, I.C. (2020) New Zealand blackcurrant extract
484	enhances muscle oxygenation during repeated intermittent forearm muscle
485	contractions in advanced and elite rock climbers. European Journal of Sport
486	<i>Science</i> , 17:1-9.
487	16. Hiles, A.M., Flood, T.R., Lee, B.J., Wheeler, L.E.V., Costello, R., Walker,
488	E.F., Ashdown, K.M., Kuennen, M.R., Willems, M.E.T. (2020). Dietary
489	supplementation with New Zealand blackcurrant extract enhances fat
490	oxidation during submaximal exercise in the heat. Journal of Science and
491	Medicine in Sport, 23(10):908-912.
492	17. Huang, L., Trieu, K., Yoshimura, S., Neal, B., Woodward, M., Campbell,
493	N.R.C., Li, Q., Lackland, D.T., Leung, A.A., Anderson, C.A.M., MacGregor,
494	G.A., He, F.J. (2020) Effect of dose and duration of reduction in dietary
495	sodium on blood pressure levels: systematic review and meta-analysis of
496	randomised trials. The British Medical Journal. 24;368:m315.

497	18. Jeukendrup, A.E., Wallis, G.A. (2005). Measurement of substrate oxidation
498	during exercise by means of gas exchange measurements. International
499	Journal of Sports Medicine. 2005;26 Suppl 1:S28-37.
500	19. Keane, K.M., Bell, P.G., Lodge, J.K., Constantinou, C.L., Jenkinson, S.E.,
501	Bass, R., Howatson, G. (2016). Phytochemical uptake following human
502	consumption of Montmorency tart cherry (L. Prunus cerasus) and influence of
503	phenolic acids on vascular smooth muscle cells in vitro. European Journal of
504	Nutrition, 55(4):1695-705.
505	20. Kuo, C.C., Fattor, J.A., Henderson, G.C., Brooks, G.A. (2005). Lipid
506	oxidation in fit young adults during postexercise recovery. Journal of Applied
507	Physiology, 99(1):349-56.
508	21. Matsumoto, H., Takenami, E., Iwasaki-Kurashige, K., Osada, T., Katsumura,
509	T., Hamaoka, T. (2005). Effects of blackcurrant anthocyanin intake on
510	peripheral muscle circulation during typing work in humans. European
511	Journal of Applied Physiology, 94(1-2):36-45.
512	22. Perrier-Melo, R.J., Germano-Soares, A.H., Freitas Brito, A., Vilela Dantas, I.,
513	da Cunha Costa, M. (2021). Post-exercise hypotension in response to high-
514	intensity interval exercise: Potential mechanisms. Revista Portuguesa de
515	Cardiologia (Engl Ed), 40(10):797-799.
516	23. Pescatello, L.S., Fargo, A.E., Leach, C.N. Jr., Scherzer, H.H. (1991). Short-
517	term effect of dynamic exercise on arterial blood pressure. Circulation. 83:
518	1557–1561
519	24. Poole, D.C., Jones, A.M (2017). Measurement of the maximum oxygen uptake
520	VO2max: VO2peak is no longer acceptable. Journal of Applied Physiology,
521	122: 997-1002.

522	25. Şahin, M.A., Bilgiç, P., Montanari, S., Willems, M.E.T. (2021). Intake
523	Duration of Anthocyanin-Rich New Zealand Blackcurrant Extract Affects
524	Metabolic Responses during Moderate Intensity Walking Exercise in Adult
525	Males. Journal of Dietary Supplements, 18(4):406-417.
526	26. Şahin, M.A., Bilgiç, P., Montanari, S., Willems, M.E.T. (2022). Daily and Not
527	Every-Other-Day Intake of Anthocyanin-Rich New Zealand Blackcurrant
528	Extract Alters Substrate Oxidation during Moderate-Intensity Walking in
529	Adult Males. Journal of Dietary Supplements, 19(1):49-61.
530	27. Santhakumar, A.B., Bulmer, A.C., Singh, I. (2014). A review of the
531	mechanisms and effectiveness of dietary polyphenols in reducing oxidative
532	stress and thrombotic risk. Journal of Human Nutrition and Dietetics. 27(1):1-
533	21.
534	28. Scazzocchio, B., Varì, R., Filesi, C., D'Archivio, M., Santangelo, C.,
535	Giovannini, C., Iacovelli, A., Silecchia, G., Li, Volti G., Galvano, F., Masella,
536	R. (2011). Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-
537	like effects by upregulating PPARy activity in human omental adipocytes.
538	Diabetes, 60(9):2234-44.
539	29. Shaffer, F.; Ginsberg, J.P. (2017) An Overview of Heart Rate Variability
540	Metrics and Norms. Frontiers in Public Health, 5, 258.
541	30. Speciale, A., Cimino, F., Saija, A., Canali, R., Virgili, F. (2014).
542	Bioavailability and molecular activities of anthocyanins as modulators of
543	endothelial function. Genes & Nutrition, 9(4), 404.
544	31. Strauss, J.A., Willems, M.E.T., Shepherd, S.O (2018). New Zealand
545	blackcurrant extract enhances fat oxidation during prolonged cycling in

546	endurance-trained females. European Journal of Applied Physiology,
547	118(6):1265-1272.
548	32. Vendrame, S., Klimis-Zacas, D. (2015). Anti-inflammatory effect of
549	anthocyanins via modulation of nuclear factor-kB and mitogen-activated
550	protein kinase signaling cascades. Nutrition Reviews. 73(6):348-58.
551	33. Whelton, P.K., He, J., Appel, L.J., Cutler, J.A., Havas, S., Kotchen,
552	T.A.,Roccella, E.J., Stout, R., Vallbona, C., Winston, M.C., Karimbakas, J.
553	and National High Blood Pressure Education Program Coordinating
554	Committee. (2002) Primary prevention of hypertension: clinical and public
555	health advisory from The National High Blood Pressure Education Program.
556	The Journal of the American Medical Association, 288, 1882-1888.
557	34. Willems, M.E., Myers, S.D., Gault, M.L., Cook, M.D. (2015). Beneficial
558	Physiological Effects with Blackcurrant Intake in Endurance Athletes.
559	International Journal of Sport Nutrition and Exercise Metabolism, 25(4):367-
560	74.
561	35. Willems, M.E.T., Banic, M., Cadden, R., Barnett, L. (2022). Enhanced
562	Walking-Induced Fat Oxidation by New Zealand Blackcurrant Extract Is Body
563	Composition-Dependent in Recreationally Active Adult Females. Nutrients.
564	14, 1475.
565	36. Willems, M.E.T., Blacker, S.D. (2022) Anthocyanin-Rich Supplementation:
566	Emerging Evidence of Strong Potential for Sport and Exercise Nutrition.
567	Frontiers in Nutrition, 31; 9:864323.
568	37. Xu, J.W., Ikeda, K., Yamori, Y. (2004). Cyanidin-3-glucoside regulates
569	phosphorylation of endothelial nitric oxide synthase. FEBS Letters, 10;574(1-
570	3):176-80.

571	38. Zhong, H., Xu, J., Yang, M., Hussain, M., Liu, X., Feng, F., Guan, R. (2023)
572	Protective Effect of Anthocyanins against Neurodegenerative Diseases
573	through the Microbial-Intestinal-Brain Axis: A Critical Review. Nutrients.
574	18;15(3):496.
575	39. Ziberna, L., Tramer, F., Moze, S., Vrhovsek, U., Mattivi, F., Passamonti, S.
576	(2012). Transport and bioactivity of cyanidin 3-glucoside into the vascular
577	endothelium. Free Radical Biology and Medicine, 1;52(9):1750-9.
578	
579	
580	
581	Figure 1 A Systolic, B Diastolic, C Mean Arterial Pressure in the control condition of
582	no exercise and 120-minutes following exercise with NZBC or placebo. Data
583	presented as mean±SD. *Control different to NZBC; ‡ Control different to placebo; #
584	NZBC different to placebo.
585	
586	Table 1. Participant characteristics
587	
588	Table 2. Volume of oxygen uptake and carbon dioxide produced, relative intensity,
589	heart rate, economy, minute ventilation, carbohydrate, and fat oxidation during 60-
590	minutes of treadmill exercise following placebo and New Zealand Blackcurrant
591	extract.
592	
593	Table 3. Heart rate variability during 60-minutes of treadmill exercise following
594	placebo and New Zealand Blackcurrant extract.
595	

- 596 Supplement Table 1. Volume of oxygen uptake and carbon dioxide produced, heart
- 597 rate, minute ventilation, carbohydrate, and fat oxidation during 30-minutes of rest
- 598 immediately following 60-minutes of treadmill exercise with placebo and New
- 599 Zealand Blackcurrant extract.
- 600
- 601 Supplement Table 2. Heart rate variability during 120-minutes of rest immediately
- 602 following 60-minutes of treadmill exercise with placebo and New Zealand
- 603 Blackcurrant extract.
- 604

Human Kinetics, 1607 N Market St, Champaign, IL 61825

Table 1. Participant characteristics

Age (years)	31±9
Height (cm)	172±10
Body mass (kg)	69±13
VO _{2max} (mL·kg ⁻¹ ·min ⁻¹)	44±9
$VO_{2max}(L \cdot min^{-1})$	3.08±0.84
$_{\rm V}{\rm VO}_{2{\rm max}}~({\rm km}\cdot{\rm h}^{-1})$	15±3
RER _{max} (AU)	1.20±0.08
HR _{max}	178±11
Resting Systolic Pressure (mmHg)	117±13
Resting Diastolic Pressure (mmHg)	71±8
Resting Mean Arterial Pressure (mmHg)	86±9
Resting Rate Pressure Product	7.03±1.26

Date reported as mean±SD from 15 participants. VO_{2max}: maximal oxygen uptake, _VVO_{2max}:

running speed on treadmill at maximal oxygen uptake, RER_{max}: Maximum Respiratory

Exchange Ratio, HR_{max:} maximum heart rate, AU: arbitrary units.

Time (min)												
	5	10	15	20	25	30	35	40	45	50	55	60
VO. (L m	vin-1)											
NZBC	1 56+0 45	1 56+0 46	1 56+0 44	1 55+0 43	1 57+0 45	1 57+0 44	1 57+0 44	1 58+0 46	1 56+0 48	1 58+0 44	1 56+0 44	1 56+0 38
Placebo	1.30 ± 0.13 1 47 ± 0.41	1.30 ± 0.10 1 49 ± 0.36	1.53 ± 0.38	1.33 ± 0.19 1 49±0 39	1.37 ± 0.13 1 49 ± 0.43	1.51 ± 0.42	1.57 ± 0.42	1.53 ± 0.41	1.56 ± 0.18 1.55 \pm 0.38	1.50 ± 0.11 1.52±0.38	1.50 ± 0.11 1.54 \pm 0.38	01.56 ± 0.38
110 (1	1 1 1 1											
VO ₂ (mL ⁻	$(kg^{-1} min^{-1})$	226152	22.7 ± 4.0	22 5 1 4 9	22.0+5.1	22 1 1 5 2	22.014.0	22.015.2	226152	22.0 ± 4.0	226148	226147
NLDU	22.7 ± 3.0 21.5+5.1	22.0 ± 3.5 21.7 ± 4.5	22.7 ± 4.9	22.3 ± 4.8	22.9 ± 3.1 21.6±4.0	23.1 ± 3.3 22.1 ± 5.0	22.9 ± 4.9 22.3 ±5.1	22.9 ± 3.2	22.0 ± 3.3 22.5 ± 4.6	22.9 ± 4.9	22.0 ± 4.0	22.0 ± 4.7
1 lacebo	21.5±5.1	21.7±4.3	22.4-4.0	21.044.0	21.0±4.9	22.1±3.0	22.3±3.1	22.4±3.2	22.3±4.0	22.3-4.9	22.3±4.0	22.0-4.0
VCO₂(L·	min ⁻¹)				• •••••							
NZBC	1.44±0.42	1.45±0.44	1.47±0.43	1.45 ± 0.43	1.46 ± 0.43	1.45 ± 0.41	1.44 ± 0.40	1.44 ± 0.41	1.42 ± 0.43	1.44 ± 0.40	1.42 ± 0.40	1.41 ± 0.40
Placebo	1.36 ± 0.42	1.41 ± 0.35	1.45 ± 0.43	1.40±0.37	1.39 ± 0.41	1.40 ± 0.40	1.41 ± 0.38	1.41 ± 0.37	1.41 ± 0.36	1.39 ± 0.34	1.41 ± 0.35	1.40 ± 0.34
Relative i	ntensity (%V0	O_{2max}										
NZBC	49.3±4.2	49.1±2.7	49.4±3.1	48.9±4.1	49.7±3.9	50.2±3.7	49.7±3.6	49.8±3.9	49.1±3.8	49.8±4.0	49.2±3.8	49.1±3.1
Placebo	46.7±3.9	47.3±2.6	48.6±4.1	47.3±4.0	47.0±3.8	48.0±3.6	48.4±3.9	48.7±3.2	48.9±4.1	48.4±4.1	49.0±3.7	49.5±3.2
Heart Rat	e (beats min ⁻¹)										
NZBC	123±15) 124±14	124±16	124±16	127±18	128±17	130 ± 20	131±21	131 ± 21	132 ± 21	133±21	132 ± 22
Placebo	123 ± 19	125 ± 16	126 ± 16	126 ± 16	127 ± 16	127±16	128 ± 16	129 ± 16	130 ± 17	131 ± 18	132 ± 18	132 ± 19
	(T 1 1 1	1										
Economy	(mL·kg ⁻¹ ·km	-1) 101+40	102:20	100 120	102 + 41	105 140	102:40	102 - 42	101 + 42	102:07	101 1 20	101 1 20
NZBC Dlassba	181 ± 40	181±42	182±39	180±39	183 ± 41	185±42	183±40	183 ± 42	181 ± 42	183±37	181 ± 38	181±38
Placebo	1/1±41	1/4±42	1/9±3/	1/4±38	1/3±39	1//±42	1/8±41	179±39	180±37	180±37	180±38	182±38
VE (L∙mi	n-1) [†]											
NZBC	42.0±11.0	44.0±12.6	42.7±10.0	44.0±12.2	45.8±12.7	45.9±13.1	45.9±12.0	45.9±13.5	45.6±13.5	46.4±12.6	46.5±12.7	46.2±12.8
Placebo	42.2±11.4	43.4±10.6	45.0±10.6	44.6±10.4	44.6±12.5	45.4±12.0	45.5±11.5	45.5±11.5	45.1±11.4	45.4±11.1	45.8±11.4	46.5±11.6
0 1 1 1		<	ŧ									
Carbohyd	Irate Oxidation	$n (g m m^{-1})^{+, m}$	1.50.0.44	1 42 0 42*	1 44+0 45	1 41 0 55	1 41 0 50	1 27:0 45	1 22 0 44*	1 25 1 0 20	1 24+0 42	1.05+0.25
NZBC	1.31 ± 0.44	1.50 ± 0.52	1.52 ± 0.44	1.42 ± 0.43	1.44 ± 0.45	1.41 ± 0.55	1.41 ± 0.52	1.37 ± 0.45	1.33 ± 0.44	1.35 ± 0.39	1.34 ± 0.42	1.25 ± 0.35
Placebo	1.41±0.44	0.30 ± 0.30	1.02±0.54	15.8±0.52	1.5/±0.01	1.50±0.50	1.50±0.44	1.48±0.49	1.4/±0.51	1.45±0.49	1.44±0.50	1.43±0.52
Fat Oxida	tion (g·min ⁻¹)	† , #										
NZBC	0.22±0.11*	$0.20\pm0.10^{*}$	$0.21\pm0.10^{*}$	$0.20{\pm}0.08^{*}$	$0.21 \pm 0.10^{*}$	0.23±0.11*	$0.24{\pm}0.12^{*}$	0.26±0.15	0.27±0.14	0.28±0.20	$0.30{\pm}0.16^*$	0.30±0.19*
Placebo	0.17±0.13	0.11±0.10	0.20 ± 0.08	0.13±0.10	0.15±0.11	0.16±0.09	0.17±0.11	0.20±0.12	0.20±0.13	$0.20{\pm}0.14$	0.20±0.13	0.22±0.12
	• † #											
KER (AU) '''	0.00 + 0.04*	0.02 0.04*	0.00 0.05*	0.02+0.02*	0.00 0.04*	0.01+0.02*	0.00	0.00.001	0.01 + 0.04*	0.01+0.01	0.00 0.04*
NZBC	$0.91\pm0.04^{\circ}$	$0.92\pm0.04^{*}$	$0.93\pm0.04^{\circ}$	0.92±0.05*	$0.92\pm0.03^{*}$	$0.92\pm0.04^{*}$	$0.91\pm0.03^{\circ}$	0.92 ± 0.04	0.92 ± 0.04	$0.91\pm0.04^{\circ}$	0.91 ± 0.04	$0.88\pm0.04^{\circ}$
Placebo	0.93±0.04	0.95 ± 0.03	0.96±0.05	0.95±0.04	0.95±0.04	0.93±0.04	0.94±0.04	0.92 ± 0.04	0.91 ± 0.04	0.93±0.04	0.91±0.04	0.91±0.05

Table 2. Volume of oxygen uptake and carbon dioxide produced, relative intensity, heart rate, running economy, minute ventilation, carbohydrate, and fat oxidation during 60-minutes of treadmill exercise following placebo and New Zealand Blackcurrant extract.

All measures were collected following 7-days of supplementation with NZBC extract or placebo during treadmill exercise. Data reported as mean \pm SD from 14 participants, †significant effect for time (P<0.05); # significant effect for condition (P<0.05); *denotes (P<0.05) NZBC vs. placebo. AU: arbitrary units.

For peer Review

Time (min)								
	0-5	10-15	A	ANOVA (P))			
			Frequency Domain			Condition	Time	Interaction
Low Freque	ency Relative Power (%)							
NZBC	42.95±14.77	51.84±20.59	55.12±19.24	55.46±18.85	56.38±24.06	0.175	0.003	0.779
Placebo	45.18±15.39	64.62±13.86	63.13±8.59	65.27±13.48	60.53±19.7			
Low Freque	ency (Ln)							
NZBC	5.6±1.71	4.24±1.39	3.1±1.35	2.87±1.25	2.71±1.43	0 656	0.000	0.012
Placebo	5.24 ± 1.48	3.89±1.77	2.98±1.36	2.81±1.48	2.65±1.23	0.030	0.000	0.912
High Freque	ency Relative Power (%)							
NZBC	52.85±16.19	40.94±23.15	34.38±21.64	35.3±20.44*	32.79±24	0.027	0.000	0.702
Placebo	46.26±17.51	25.08±13.44	20.63±11.45	17.81±11.39	26.47±20.43	0.037	0.000	0.702
High Freque	ency (Ln)							
NZBC	5.91±1.95	4.05±2.18	2.72±1.78	2.27±1.36	1.87±1.36	0.212	0.000	0.949
Placebo	5.37±1.7	3±2.11	1.92 ± 1.63	1.64 ± 1.43	1.58±1.21	0.212	0.000	0.848
Low/High F	Frequency (Ln)							
NZBC	-0.21±0.68	0.32±1.06	0.63±1.1	0.56±0.97	0.67±1.27	0.0(2	0.000	0 (12
Placebo	0.01±0.79	1.03±0.7	1.26±0.71	1.45±0.75	0.98±1.19	0.065	0.000	0.045
Total Power (Ln)								
NZBC	6.5±1.85	4.98±1.73	3.75±1.54	3.44±1.47	3.28±1.43	0.444	0.000	0.800
Placebo	6.08 ± 1.62	4.35±1.86	3.42±1.39	3.25 ± 1.43	3.08±1.24	0.444	0.000	0.899
			Time Domain		•			
SDNN (ms))							
NZBC	46.71±32.02	23.88±25.3	12.25±10.48	9.71±6.24	9±4.95	0.241	0.000	0.792
Placebo	39.53±28.45	15.35±18.8	8.43±5.13	8.08±5.13	7.18±4.27	0.341	0.000	0.785
RMSSD (m	ns)							
NZBC	46.83±39.4	31.06±36.33	15.67±17.4	12.16±11.51	10.74±9.3	0.229	0.000	0.911
Placebo	40.88±38.37	17.22±25.96	8.21±4.64	7.88±4.9	8.1±6.22	0.328	0.000	0.811
			Overview					
Parasympat	hetic nervous system inde	ex						
NZBC	-1.78 ± 1.04	-2.6±1	-3.07 ± 0.74	-3.24 ± 0.54	-3.33±0.49	0.465	0.000	0.650
Placebo	-1.81 ± 0.92	-3.06 ± 0.77	-3.25 ± 0.49	-3.37±0.51	-3.42 ± 0.61	0.405	0.000	0.659
Sympathetic	c nervous system index							
NZBC	5.15±1.8	8.04±2.8	10.04 ± 5.89	10.46 ± 5.26	11.07±5.82	0 (27	0.000	0.972
Placebo	4.73±2.06	8.61±2.55	11.14±6.74	11.96±6.58	12.78±7.13	0.627	0.000	0.8/2
Stress Index	x							
NZBC	16.95±10.48	31.2±16.59	40.92±25.31	42.02±22.01	44.27±24.63	0.490	0.000	0 725
Placebo	16.76±9.99	32.88±13.54	47.74±28.6	49.98±27.03	52.9±28.36	0.489	0.000	0.735

Table 3. Heart rate variability during 60-minutes of treadmill exercise following placebo and New Zealand Blackcurrant extract.

All measures were collected following 7-days of supplementation with NZBC extract or placebo during treadmill exercise. Data reported as mean±SD from 10 participants. SDNN; Standard Deviation of the NN intervals, RMSSD; square root of the mean of the sum of the squares of differences between adjacent NN intervals. *different between placebo and NZBC (P<0.05).

For peer Review

Time (min)									
Condition	5	10	15	20	25	30			
VO₂(L·mir	n-1) [†]								
NZBC	0.32 ± 0.07	0.31 ± 0.08	0.28 ± 0.09	0.30 ± 0.08	0.29 ± 0.06	0.28 ± 0.07			
Placebo	0.39±0.10	0.31±0.07	0.30 ± 0.07	0.29±0.08	0.28±0.06	0.28 ± 0.06			
VO₂(mL·k	g ⁻¹ ·min ⁻¹) [†]								
NZBC	4.69±0.90	4.45±0.74	4.11±1.14	4.32±0.93	4.20±0.79	4.03±0.93			
Placebo	4.96±1.16	4.43±1.05	4.28±0.93	4.15±0.72	4.00±0.83	$3.94{\pm}0.78$			
VCO (L.m	vin-1) †								
NZBC	0.31 ± 0.07	0 28+0 08	0.25 ± 0.08	0.26 ± 0.07	0.25 ± 0.05	0 24+0 06			
Placebo	0.34 ± 0.09	0.29 ± 0.06	0.23 ± 0.03 0.27±0.07	0.26 ± 0.07	0.23 ± 0.05 0.24 ± 0.05	0.24 ± 0.05			
Heart Rate	(beats · min ⁻¹)	ŕ							
NZBC	88±34	86±35	82±34	83±36	83±36	80±36			
Placebo	84±20	83±21	79±20	81±21	78±22	75±20			
VE (L·min	-1) [†]								
NZBC	13.63±2.65	12.32±2.35	11.17±2.86	11.45±2.73	10.87±2.09	10.36±2.32			
Placebo	15.25±3.75	12.87±2.78	12.12±2.72	11.25 ± 1.80	10.36 ± 2.32	10.33 ± 2.08			
Carbohydra	ate Oxidation ((g.min-1)							
NZBC	0.37 ± 0.09	0.28 ± 0.10	0.23 ± 0.10	0.22 ± 0.10	0 18±0 06	0 19±0 09			
Placebo	0.40 ± 0.12	0.29 ± 0.08	0.26 ± 0.10	0.21 ± 0.09	0.19 ± 0.09	0.18 ± 0.07			
	L.								
Fat Oxidati	on $(g \cdot min^{-1})^{\dagger}$								
NZBC	0.02 ± 0.02	0.05 ± 0.03	0.05 ± 0.02	0.07 ± 0.03	0.07 ± 0.02	0.06 ± 0.06			
Placebo	0.02 ± 0.03	0.04 ± 0.02	0.05 ± 0.03	0.07 ± 0.04	0.06 ± 0.03	0.07 ± 0.03			
RER (AU)	Ť								
NZBC	0.98 ± 0.07	0.91±0.05	0.89 ± 0.04	0.88 ± 0.05	0.85±0.03	0.87±0.02			
Placebo	0.97 ± 0.07	0.93±0.06	0.91±0.07	0.87±0.09	0.87 ± 0.07	0.86 ± 0.06			

Supplement Table 1. Volume of oxygen uptake and carbon dioxide produced, heart rate, minute ventilation, carbohydrate, and fat oxidation during 30-minutes of rest immediately following 60-minutes of treadmill exercise with placebo and New Zealand Blackcurrant extract.

All measures were collected following 7-days of supplementation with NZBC extract or placebo during 30 minutes of rest following 60 minutes treadmill exercise. Data reported as mean \pm SD from 14 participants, †significant effect for time (*P*<0.05).

For peer Review

Supplement Table 2. Heart rate variability during 120-minutes of rest immediately following 60-minutes of treadmill exercise with placebo and New Zealand Blackcurrant extract.

Time (min)												
	0-5	10-15	25-30	40-45	55-60	70-75	85-90	100-105	115-120		ANOVA (I	?)
				F	requency Doma	in				Condition	Time	Interaction
Low Freque	ency Relative Pov	ver (%)										
NZBC	51.25±12.79	45.15±13.43	44.84±17.43	52.19±22.18	55.55±15.65	49.58±18.34	51.43±21.62	53.74±16.93	55.35±16.89	0.764	0.217	0.224
Placebo	61.14±14.98	58.56 ± 20.08	45.49±16.45	47.53±20.58	54.59±19.39	51.21±18.64	49.79±16.06	53.14±15.34	55.81±19.18	0.764	0.217	0.224
Low Freque	ency (Ln)											
NZBC	6.28±0.88	6.55±0.78	6.98±0.9	7.08±0.87	7.16±0.92	7.02±1.01	6.96±0.97	7.29±0.67	7.37±0.51	0.070	0.000	0 ((7
Placebo	6.21±1.33	6.94±1.03	6.79±1.05	6.74±0.97	7.29±0.69	7.19±0.69	7.11±0.8	7.36±0.43	7.47±0.73	0.970	0.000	0.007
High Freque	ency Relative Por	wer (%)										
NZBC	40.9±13.61	49.59±14.15	49.72±19.49	40.56±23.66	34.12±16.55	41.02±22.02	42.12±24.38	32.68±17.83	36.56±17.43	0.902	0.007	0.001
Placebo	29.27±14.39	35.28±19.21	47.6±19.65	42.69±22.9	38.36±20.24	36.61±22.84	42.99±16.28	38.04±17.14	37.73±20.46	0.805	0.007	0.091
High Freque	ency (Ln)											
NZBC	6.01±1.14	6.62±0.7	7.11±0.8	6.77±0.89	6.61±0.98	6.78±1.02	6.77±1.14	6.7±0.92	6.93±0.85	0.941	0.000	0.429
Placebo	5.38±1.66	6.34±0.95	6.8±1.08	6.57±1.03	6.87±0.55	6.78±0.74	6.98±0.74	6.97±0.61	7.08±0.74	0.841	0.000	0.428
Low/High F	Frequency Ratio (Ln)										
NZBC	0.49±0.97	0.13±0.91	0.13±1.2	0.48±1.23	0.67±0.83	0.37±1.09	0.38 ± 1.42	0.74 ± 1.01	0.56 ± 0.89	0.910	0.026	0.140
Placebo	0.97 ± 0.87	0.81±1.2	0.19±1.07	0.34±1.18	0.55±1.06	0.55±1.13	0.33±0.96	0.59±1.03	0.49±1.07	0.810	0.030	0.140
Total Power	r (Ln)											
NZBC	6.98±0.93	7.38±0.67	7.88±0.69	7.85±0.68	7.79±0.88	7.82±0.87	7.8±0.78	7.96±0.62	8.05±0.55	0.009	0.000	0 (79
Placebo	6.73±1.39	7.54±0.82	7.64±0.93	7.58±0.77	7.97±0.31	7.95±0.46	7.88 ± 0.66	8.05±0.31	8.17±0.49	0.908	0.000	0.078
					Time Domain							
SDNN (ms)												
NZBC	34.34±11.71	45.49±14.7	56.99±19.55	53.12±17.71	53.62±19.63	57.36±22.73	58.81±20.89	61.19±19.47	62.06±16.49	0.020	0.000	0.072
Placebo	32.13±16.26	46.53±18.16	53.43±23.71	49.19±18.04	56.75±11.7	56.71±13.73	55.93±16.62	58.68±14.6	62.57±16.61	0.820	0.000	0.8/3
RMSSD (m	s)											
NZBC	31.44±13.94	49.15±22.86	64.16±31.8	56.1±29.11	54.18±24.26	62.23±31.53	62.52±30.31	59.16±25.68	61.06±21.91	0.067	0.000	0.000
Placebo	27.37±14.61	46.4±21.48	57.29±33.05	51.4±23.4	58.79±15.2	58.55±20.37	61.77±21.16	60.56±21.66	65.04±25.49	0.867	0.000	0.608
					Overview							
Parasympat	hetic nervous sys	tem index										
NZBC	-1.36±0.84	-0.04 ± 1.34	0.65±1.59	0.58 ± 1.52	0.29±1.25	0.93±1.56	0.91±1.45	0.7±1.24	0.87±1.32	0.042	0.000	0.100
Placebo	-1.7 ± 0.73	-0.23 ± 1.02	0.39 ± 1.47	0.35±1.04	0.77 ± 0.86	0.76 ± 0.98	1.05 ± 0.95	0.96±1.13	1.11 ± 1.14	0.942	0.000	0.198
Sympathetic	c nervous system	index										
NZBC	2.05±1.32	0.45±1.39	-0.14 ± 1.41	-0.21±1.27	-0.1 ± 1.22	-0.53±1.25	-0.59±1.09	-0.48 ± 0.98	-0.58 ± 1.1	0.022	0.000	0.616
Placebo	2.71±1.66	0.64 ± 1.52	0.08 ± 1.28	-0.09±0.86	-0.61±0.53	-0.6 ± 0.54	-0.76 ± 0.62	-0.74±0.7	-0.82 ± 0.64	0.933	0.000	0.616
Stress Index	1											
NZBC	12.94±3.54	10.08 ± 3.83	8.44±3.78	8.88±3.3	7.75±4.65	7.94±3.55	7.48±2.6	7.61±2.65	7.35±2.4	0.7(2	0.000	0 772
Placebo	14.46±5.13	10.83 ± 5.69	9.53±4.3	9.42±3.21	7.47±1.09	7.54±1.3	7.64±1.93	7.36±1.64	6.99±1.5	0.702	0.000	0.775

All measures were collected following 7-days of supplementation with NZBC extract or placebo following 60-minutes of treadmill exercise. Data reported as mean±SD from 10 participants. SDNN; Standard Deviation of the NN intervals, RMSSD; square root of the mean of the sum of the squares of differences between adjacent NN intervals.

For peer Review

127x266mm (300 x 300 DPI)